forked from mapillary/OpenSfM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiview.py
728 lines (600 loc) · 21.6 KB
/
multiview.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
import math
import random
from typing import Any, Dict, List, Optional, Tuple
import cv2
import numpy as np
from opensfm import pygeometry, pymap, pyrobust, transformations as tf
def nullspace(A: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Compute the null space of A.
Return the smallest singular value and the corresponding vector.
"""
u, s, vh = np.linalg.svd(A)
return s[-1], vh[-1]
def homogeneous(x: np.ndarray) -> np.ndarray:
"""Add a column of ones to x."""
s = x.shape[:-1] + (1,)
return np.hstack((x, np.ones(s)))
def homogeneous_vec(x: np.ndarray) -> np.ndarray:
"""Add a column of zeros to x."""
s = x.shape[:-1] + (1,)
return np.hstack((x, np.zeros(s)))
def euclidean(x: np.ndarray) -> np.ndarray:
"""Divide by last column and drop it."""
return x[..., :-1] / x[..., -1:]
def cross_product_matrix(x: np.ndarray) -> np.ndarray:
"""Return the matrix representation of x's cross product"""
return np.array([[0, -x[2], x[1]], [x[2], 0, -x[0]], [-x[1], x[0], 0]])
def P_from_KRt(K: np.ndarray, R: np.ndarray, t: np.ndarray) -> np.ndarray:
"""P = K[R|t]."""
P = np.empty((3, 4))
P[:, :3] = np.dot(K, R)
P[:, 3] = np.dot(K, t)
return P
def KRt_from_P(P: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""Factorize the camera matrix into K,R,t as P = K[R|t].
>>> K = np.array([[1, 2, 3],
... [0, 4, 5],
... [0, 0, 1]])
>>> R = np.array([[ 0.57313786, -0.60900664, 0.54829181],
... [ 0.74034884, 0.6716445 , -0.02787928],
... [-0.35127851, 0.42190588, 0.83582225]])
>>> t = np.array([1, 2, 3])
>>> P = P_from_KRt(K, R, t)
>>> KK, RR, tt = KRt_from_P(P)
>>> np.allclose(K, KK)
True
>>> np.allclose(R, RR)
True
>>> np.allclose(t, tt)
True
"""
K, R = rq(P[:, :3])
T = np.diag(np.sign(np.diag(K))) # ensure K has positive diagonal
K = np.dot(K, T)
R = np.dot(T, R)
t = np.linalg.solve(K, P[:, 3])
if np.linalg.det(R) < 0: # ensure det(R) = 1
R = -R
t = -t
K /= K[2, 2] # normalise K
return K, R, t
def rq(A: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Decompose a matrix into a triangular times rotation.
(from PCV)
>>> Q = np.array([[ 0.57313786, -0.60900664, 0.54829181],
... [ 0.74034884, 0.6716445 , -0.02787928],
... [-0.35127851, 0.42190588, 0.83582225]])
>>> R = np.array([[1, 2, 3],
... [0, 4, 5],
... [0, 0, 1]])
>>> r, q = rq(R.dot(Q))
>>> np.allclose(r.dot(q), R.dot(Q))
True
>>> np.allclose(abs(np.linalg.det(q)), 1.0)
True
>>> np.allclose(r[1,0], 0) and np.allclose(r[2,0], 0) and np.allclose(r[2,1], 0)
True
"""
Q, R = np.linalg.qr(np.flipud(A).T)
R = np.flipud(R.T)
Q = Q.T
return R[:, ::-1], Q[::-1, :]
def vector_angle(u: np.ndarray, v: np.ndarray) -> float:
"""Angle between two vectors.
>>> u = [ 0.99500417, -0.33333333, -0.09983342]
>>> v = [ -0.99500417, +0.33333333, +0.09983342]
>>> vector_angle(u, u)
0.0
>>> np.isclose(vector_angle(u, v), np.pi)
True
"""
cos = np.dot(u, v) / math.sqrt(np.dot(u, u) * np.dot(v, v))
cos = np.clip(cos, -1, 1)
return math.acos(cos)
def decompose_similarity_transform(
T: np.ndarray,
) -> Tuple[float, np.ndarray, np.ndarray]:
"""Decompose the similarity transform to scale, rotation and translation"""
m, n = T.shape[0:2]
assert m == n
A, b = T[: (m - 1), : (m - 1)], T[: (m - 1), (m - 1)]
s = np.linalg.det(A) ** (1.0 / (m - 1))
return s, A / s, b
def ransac_max_iterations(
kernel: Any, inliers: np.ndarray, failure_probability: float
) -> float:
if len(inliers) >= kernel.num_samples():
return 0
inlier_ratio = float(len(inliers)) / kernel.num_samples()
n = kernel.required_samples
return math.log(failure_probability) / math.log(1.0 - inlier_ratio**n)
TRansacSolution = Tuple[np.ndarray, np.ndarray, float]
def ransac(kernel: Any, threshold: float) -> TRansacSolution:
"""Robustly fit a model to data.
>>> x = np.array([1., 2., 3.])
>>> y = np.array([2., 4., 7.])
>>> kernel = TestLinearKernel(x, y)
>>> model, inliers, error = ransac(kernel, 0.1)
>>> np.allclose(model, 2.0)
True
>>> inliers
array([0, 1])
>>> np.allclose(error, 0.1)
True
"""
max_iterations = 1000
best_error = float("inf")
best_model = None
best_inliers = []
i = 0
while i < max_iterations:
try:
samples = kernel.sampling()
except AttributeError:
samples = random.sample(
range(kernel.num_samples()), kernel.required_samples
)
models = kernel.fit(samples)
for model in models:
errors = kernel.evaluate(model)
inliers = np.flatnonzero(np.fabs(errors) < threshold)
error = np.fabs(errors).clip(0, threshold).sum()
if len(inliers) and error < best_error:
best_error = error
best_model = model
best_inliers = inliers
max_iterations = min(
max_iterations, ransac_max_iterations(kernel, best_inliers, 0.01)
)
i += 1
return best_model, best_inliers, best_error
class TestLinearKernel:
"""A kernel for the model y = a * x.
>>> x = np.array([1., 2., 3.])
>>> y = np.array([2., 4., 7.])
>>> kernel = TestLinearKernel(x, y)
>>> models = kernel.fit([0])
>>> models
[2.0]
>>> errors = kernel.evaluate(models[0])
>>> np.allclose(errors, [0., 0., 1.])
True
"""
required_samples = 1
def __init__(self, x: np.ndarray, y: np.ndarray) -> None:
self.x: np.ndarray = x
self.y: np.ndarray = y
def num_samples(self) -> int:
return len(self.x)
def fit(self, samples: np.ndarray) -> List[float]:
x = self.x[samples[0]]
y = self.y[samples[0]]
return [y / x]
def evaluate(self, model: np.ndarray) -> np.ndarray:
return self.y - model * self.x
class PlaneKernel:
"""
A kernel for estimating plane from on-plane points and vectors
"""
def __init__(
self, points, vectors, verticals, point_threshold=1.0, vector_threshold=5.0
) -> None:
self.points = points
self.vectors = vectors
self.verticals = verticals
self.required_samples = 3
self.point_threshold = point_threshold
self.vector_threshold = vector_threshold
def num_samples(self) -> int:
return len(self.points)
def sampling(self) -> Dict[str, Any]:
samples = {}
if len(self.vectors) > 0:
samples["points"] = self.points[
random.sample(range(len(self.points)), 2), :
]
samples["vectors"] = [
self.vectors[i] for i in random.sample(range(len(self.vectors)), 1)
]
else:
samples["points"] = self.points[
:, random.sample(range(len(self.points)), 3)
]
samples["vectors"] = None
return samples
def fit(self, samples: Dict[str, np.ndarray]) -> List[np.ndarray]:
model = fit_plane(samples["points"], samples["vectors"], self.verticals)
return [model]
def evaluate(self, model) -> np.ndarray:
# only evaluate on points
normal = model[0:3]
normal_norm = np.linalg.norm(normal) + 1e-10
point_error = np.abs(model.T.dot(homogeneous(self.points).T)) / normal_norm
vectors = np.array(self.vectors)
vector_norm = np.sum(vectors * vectors, axis=1)
vectors = (vectors.T / vector_norm).T
vector_error = abs(
np.rad2deg(abs(np.arccos(vectors.dot(normal) / normal_norm))) - 90
)
vector_error[vector_error < self.vector_threshold] = 0.0
vector_error[vector_error >= self.vector_threshold] = self.point_threshold + 0.1
point_error[point_error < self.point_threshold] = 0.0
point_error[point_error >= self.point_threshold] = self.point_threshold + 0.1
errors = np.hstack((point_error, vector_error))
return errors
def fit_plane_ransac(
points: np.ndarray,
vectors: np.ndarray,
verticals: np.ndarray,
point_threshold: float = 1.2,
vector_threshold: float = 5.0,
) -> TRansacSolution:
vectors = np.array([v / math.pi * 180.0 for v in vectors])
kernel = PlaneKernel(
points - points.mean(axis=0),
vectors,
verticals,
point_threshold,
vector_threshold,
)
p, inliers, error = ransac(kernel, point_threshold)
num_point = points.shape[0]
points_inliers = points[inliers[inliers < num_point], :]
vectors_inliers = np.array(
[vectors[i - num_point] for i in inliers[inliers >= num_point]]
)
p = fit_plane(
points_inliers - points_inliers.mean(axis=0), vectors_inliers, verticals
)
return p, inliers, error
def fit_plane(
points: np.ndarray, vectors: Optional[np.ndarray], verticals: Optional[np.ndarray]
) -> np.ndarray:
"""Estimate a plane from on-plane points and vectors.
>>> x = [[0,0,0], [1,0,0], [0,1,0]]
>>> p = fit_plane(x, None, None)
>>> np.allclose(p, [0,0,1,0]) or np.allclose(p, [0,0,-1,0])
True
>>> x = [[0,0,0], [0,1,0]]
>>> v = [[1,0,0]]
>>> p = fit_plane(x, v, None)
>>> np.allclose(p, [0,0,1,0]) or np.allclose(p, [0,0,-1,0])
True
>>> vert = [[0,0,1]]
>>> p = fit_plane(x, v, vert)
>>> np.allclose(p, [0,0,1,0])
True
"""
# (x 1) p = 0
# (v 0) p = 0
points = np.array(points)
s = 1.0 / max(1e-8, points.std()) # Normalize the scale to improve conditioning.
x = homogeneous(s * points)
if vectors is not None and len(vectors) > 0:
v = homogeneous_vec(s * np.array(vectors))
A = np.vstack((x, v))
else:
A = x
evalues, evectors = np.linalg.eig(A.T.dot(A))
smallest_evalue_idx = min(enumerate(evalues), key=lambda x: x[1])[0]
p = evectors[:, smallest_evalue_idx]
if np.allclose(p[:3], [0, 0, 0]):
return np.array([0.0, 0.0, 1.0, 0])
# Use verticals to decide the sign of p
if verticals is not None and len(verticals) > 0:
d = 0
for vertical in verticals:
d += p[:3].dot(vertical)
p *= np.sign(d)
return p
def plane_horizontalling_rotation(p: np.ndarray) -> Optional[np.ndarray]:
"""Compute a rotation that brings p to z=0
>>> p = [1.0, 2.0, 3.0]
>>> R = plane_horizontalling_rotation(p)
>>> np.allclose(R.dot(p), [0, 0, np.linalg.norm(p)])
True
>>> p = [0, 0, 1.0]
>>> R = plane_horizontalling_rotation(p)
>>> np.allclose(R.dot(p), [0, 0, np.linalg.norm(p)])
True
>>> p = [0, 0, -1.0]
>>> R = plane_horizontalling_rotation(p)
>>> np.allclose(R.dot(p), [0, 0, np.linalg.norm(p)])
True
>>> p = [1e-14, 1e-14, -1.0]
>>> R = plane_horizontalling_rotation(p)
>>> np.allclose(R.dot(p), [0, 0, np.linalg.norm(p)])
True
"""
v0 = p[:3]
v1 = np.array([0.0, 0.0, 1.0])
angle = tf.angle_between_vectors(v0, v1)
axis = tf.vector_product(v0, v1)
if np.linalg.norm(axis) > 0:
return tf.rotation_matrix(angle, axis)[:3, :3]
elif angle < 1.0:
return np.eye(3)
elif angle > 3.0:
return np.diag([1, -1, -1])
return None
def fit_similarity_transform(
p1: np.ndarray, p2: np.ndarray, max_iterations: int = 1000, threshold: float = 1
) -> Tuple[np.ndarray, np.ndarray]:
"""Fit a similarity transform T such as p2 = T . p1 between two points sets p1 and p2"""
# TODO (Yubin): adapt to RANSAC class
num_points, dim = p1.shape[0:2]
assert p1.shape[0] == p2.shape[0]
best_inliers = []
best_T = np.array((3, 4))
for _ in range(max_iterations):
rnd = np.random.permutation(num_points)
rnd = rnd[0:dim]
T = tf.affine_matrix_from_points(p1[rnd, :].T, p2[rnd, :].T, shear=False)
p1h = homogeneous(p1)
p2h = homogeneous(p2)
errors = np.sqrt(np.sum((p2h.T - np.dot(T, p1h.T)) ** 2, axis=0))
inliers = np.argwhere(errors < threshold)[:, 0]
if len(inliers) >= len(best_inliers):
best_T = T.copy()
best_inliers = np.argwhere(errors < threshold)[:, 0]
# Estimate similarity transform with inliers
if len(best_inliers) > dim + 3:
best_T = tf.affine_matrix_from_points(
p1[best_inliers, :].T, p2[best_inliers, :].T, shear=False
)
errors = np.sqrt(np.sum((p2h.T - np.dot(best_T, p1h.T)) ** 2, axis=0))
best_inliers = np.argwhere(errors < threshold)[:, 0]
return best_T, best_inliers
def K_from_camera(camera: Dict[str, Any]) -> np.ndarray:
f = float(camera["focal"])
return np.array([[f, 0.0, 0.0], [0.0, f, 0.0], [0.0, 0.0, 1.0]])
def focal_from_homography(H: np.ndarray) -> np.ndarray:
"""Solve for w = H w H^t, with w = diag(a, a, b)
>>> K = np.diag([0.8, 0.8, 1])
>>> R = cv2.Rodrigues(np.array([0.3, 0, 0]))[0]
>>> H = K.dot(R).dot(np.linalg.inv(K))
>>> f = focal_from_homography(3 * H)
>>> np.allclose(f, 0.8)
True
"""
H = H / np.linalg.det(H) ** (1.0 / 3.0)
A = np.array(
[
[H[0, 0] * H[0, 0] + H[0, 1] * H[0, 1] - 1, H[0, 2] * H[0, 2]],
[H[0, 0] * H[1, 0] + H[0, 1] * H[1, 1], H[0, 2] * H[1, 2]],
[H[0, 0] * H[2, 0] + H[0, 1] * H[2, 1], H[0, 2] * H[2, 2]],
[H[1, 0] * H[1, 0] + H[1, 1] * H[1, 1] - 1, H[1, 2] * H[1, 2]],
[H[1, 0] * H[2, 0] + H[1, 1] * H[2, 1], H[1, 2] * H[2, 2]],
[H[2, 0] * H[2, 0] + H[2, 1] * H[2, 1], H[2, 2] * H[2, 2] - 1],
]
)
_, (a, b) = nullspace(A)
focal = np.sqrt(a / b)
return focal
def R_from_homography(
H: np.ndarray, f1: np.ndarray, f2: np.ndarray
) -> Optional[np.ndarray]:
K1 = np.diag([f1, f1, 1])
K2 = np.diag([f2, f2, 1])
K2inv = np.linalg.inv(K2)
R = K2inv.dot(H).dot(K1)
R = project_to_rotation_matrix(R)
return R
def project_to_rotation_matrix(A: np.ndarray) -> Optional[np.ndarray]:
try:
u, d, vt = np.linalg.svd(A)
except np.linalg.linalg.LinAlgError:
return None
return u.dot(vt)
def camera_up_vector(rotation_matrix: np.ndarray) -> np.ndarray:
"""Unit vector pointing to zenit in camera coords.
:param rotation: camera pose rotation
"""
return rotation_matrix[:, 2]
def camera_compass_angle(rotation_matrix: np.ndarray) -> float:
"""Compass angle of a camera
Angle between world's Y axis and camera's Z axis projected
onto the XY world plane.
:param rotation: camera pose rotation
"""
z = rotation_matrix[2, :] # Camera's Z axis in world coordinates
angle = np.arctan2(z[0], z[1])
return np.degrees(angle)
def rotation_matrix_from_up_vector_and_compass(
up_vector: List[float], compass_angle: float
) -> np.ndarray:
"""Camera rotation given up_vector and compass.
>>> d = [1, 2, 3]
>>> angle = -123
>>> R = rotation_matrix_from_up_vector_and_compass(d, angle)
>>> np.allclose(np.linalg.det(R), 1.0)
True
>>> up = camera_up_vector(R)
>>> np.allclose(d / np.linalg.norm(d), up)
True
>>> np.allclose(camera_compass_angle(R), angle)
True
>>> d = [0, 0, 1]
>>> angle = 123
>>> R = rotation_matrix_from_up_vector_and_compass(d, angle)
>>> np.allclose(np.linalg.det(R), 1.0)
True
>>> up = camera_up_vector(R)
>>> np.allclose(d / np.linalg.norm(d), up)
True
"""
r3 = np.array(up_vector) / np.linalg.norm(up_vector)
ez = np.array([0.0, 0.0, 1.0])
r2 = ez - np.dot(ez, r3) * r3
r2n = np.linalg.norm(r2)
if r2n > 1e-8:
r2 /= r2n
r1 = np.cross(r2, r3)
else: # We are looking to nadir or zenith
r1 = np.array([1.0, 0.0, 0.0])
r2 = np.cross(r3, r1)
compass_rotation = cv2.Rodrigues(np.radians([0.0, 0.0, compass_angle]))[0]
return np.column_stack([r1, r2, r3]).dot(compass_rotation)
def motion_from_plane_homography(
H: np.ndarray,
) -> Optional[List[Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]]]:
"""Compute candidate camera motions from a plane-induced homography.
Returns up to 8 motions.
The homography is assumed to be in normalized camera coordinates.
Uses the method of [Faugueras and Lustman 1988]
[Faugueras and Lustman 1988] Faugeras, Olivier, and F. Lustman.
“Motion and Structure from Motion in a Piecewise Planar Environment.”
Report. INRIA, June 1988. https://hal.inria.fr/inria-00075698/document
"""
try:
u, l, vh = np.linalg.svd(H)
except ValueError:
return None
d1, d2, d3 = l
s = np.linalg.det(u) * np.linalg.det(vh)
# Skip the cases where some singular values are nearly equal
if d1 / d2 < 1.0001 or d2 / d3 < 1.0001:
return None
abs_x1 = np.sqrt((d1**2 - d2**2) / (d1**2 - d3**2))
abs_x3 = np.sqrt((d2**2 - d3**2) / (d1**2 - d3**2))
possible_x1_x3 = [
(abs_x1, abs_x3),
(abs_x1, -abs_x3),
(-abs_x1, abs_x3),
(-abs_x1, -abs_x3),
]
solutions = []
# Compute solutions for the two cases (1) case d' > 0 and
# (2) case d' < 0
for x1, x3 in possible_x1_x3:
# compute sin and cos for d'>0 (theta, _n) and d'<0 (phi, _n) cases
sin_term = x1 * x3 / d2
sin_theta = (d1 - d3) * sin_term
sin_phi = (d1 + d3) * sin_term
d1_x3_2 = (d1 * x3**2)
d3_x1_2 = (d3 * x1**2)
cos_theta = (d3_x1_2 + d1_x3_2) / d2
cos_phi = (d3_x1_2 - d1_x3_2) / d2
# define rotation matrices for both cases
Rp_p = np.array(
[[cos_theta, 0, -sin_theta], [0, 1, 0], [sin_theta, 0, cos_theta]]
) # case d' > 0
Rp_n = np.array(
[[cos_phi, 0, sin_phi], [0, -1, 0], [sin_phi, 0, -cos_phi]]
) # case d' < 0
# compute transformations
np_ = np.array([x1, 0, x3])
tp_p = (d1 - d3) * np.array([x1, 0, -x3]) # case d' > 0
tp_n = (d1 + d3) * np_ # case d' < 0
R_p = s * np.dot(np.dot(u, Rp_p), vh) # case d' > 0
R_n = s * np.dot(np.dot(u, Rp_n), vh) # case d' < 0
t_p = np.dot(u, tp_p) # case d' > 0
t_n = np.dot(u, tp_n) # case d' < 0
n = -np.dot(vh.T, np_)
d = s * d2
solutions.append((R_p, t_p, n, d)) # case d' > 0
solutions.append((R_n, t_n, n, -d)) # case d' < 0
return solutions
def absolute_pose_known_rotation_ransac(
bs: np.ndarray,
Xs: np.ndarray,
threshold: float,
iterations: int,
probability: float,
) -> np.ndarray:
params = pyrobust.RobustEstimatorParams()
params.iterations = iterations
result = pyrobust.ransac_absolute_pose_known_rotation(
bs, Xs, threshold, params, pyrobust.RansacType.RANSAC
)
t = -result.lo_model.copy()
R = np.identity(3)
return np.concatenate((R, [[t[0]], [t[1]], [t[2]]]), axis=1)
def absolute_pose_ransac(
bs: np.ndarray,
Xs: np.ndarray,
threshold: float,
iterations: int,
probability: float,
) -> np.ndarray:
params = pyrobust.RobustEstimatorParams()
params.iterations = iterations
result = pyrobust.ransac_absolute_pose(
bs, Xs, threshold, params, pyrobust.RansacType.RANSAC
)
Rt = result.lo_model.copy()
R, t = Rt[:3, :3].copy(), Rt[:, 3].copy()
Rt[:3, :3] = R.T
Rt[:, 3] = -R.T.dot(t)
return Rt
def relative_pose_ransac(
b1: np.ndarray,
b2: np.ndarray,
threshold: float,
iterations: int,
probability: float,
) -> np.ndarray:
params = pyrobust.RobustEstimatorParams()
params.iterations = iterations
result = pyrobust.ransac_relative_pose(
b1, b2, threshold, params, pyrobust.RansacType.RANSAC
)
Rt = result.lo_model.copy()
R, t = Rt[:3, :3].copy(), Rt[:, 3].copy()
Rt[:3, :3] = R.T
Rt[:, 3] = -R.T.dot(t)
return Rt
def relative_pose_ransac_rotation_only(
b1: np.ndarray,
b2: np.ndarray,
threshold: float,
iterations: int,
probability: float,
) -> np.ndarray:
params = pyrobust.RobustEstimatorParams()
params.iterations = iterations
result = pyrobust.ransac_relative_rotation(
b1, b2, threshold, params, pyrobust.RansacType.RANSAC
)
return result.lo_model.T
def relative_pose_optimize_nonlinear(
b1: np.ndarray, b2: np.ndarray, t: np.ndarray, R: np.ndarray, iterations: int
) -> np.ndarray:
Rt = np.zeros((3, 4))
Rt[:3, :3] = R.T
Rt[:, 3] = -R.T.dot(t)
Rt_refined = pygeometry.relative_pose_refinement(Rt, b1, b2, iterations)
R, t = Rt_refined[:3, :3].copy(), Rt_refined[:, 3].copy()
Rt[:3, :3] = R.T
Rt[:, 3] = -R.T.dot(t)
return Rt
def triangulate_gcp(
point: pymap.GroundControlPoint,
shots: Dict[str, pymap.Shot],
reproj_threshold: float = 0.02,
min_ray_angle_degrees: float = 1.0,
) -> Optional[np.ndarray]:
"""Compute the reconstructed position of a GCP from observations."""
os, bs, ids = [], [], []
for observation in point.observations:
shot_id = observation.shot_id
if shot_id in shots:
shot = shots[shot_id]
os.append(shot.pose.get_origin())
x = observation.projection
b = shot.camera.pixel_bearing(np.array(x))
r = shot.pose.get_rotation_matrix().T
bs.append(r.dot(b))
ids.append(shot_id)
if len(os) >= 2:
thresholds = len(os) * [reproj_threshold]
valid_triangulation, X = pygeometry.triangulate_bearings_midpoint(
np.asarray(os),
np.asarray(bs),
thresholds,
np.radians(min_ray_angle_degrees),
np.radians(180.0 - min_ray_angle_degrees),
)
if valid_triangulation:
return X
return None