Majesty Diffusion 是基于Diffusion Model的,文本到图像(Text-to-image)的生成工具,擅长生成视觉协调的形状。 👸
访问我们的 Majestic Guide (英文网站,建设中), 或者加入我们的英文社区 on Discord。 也可以通过 @multimodalart on Twitter 或 @Dango233 on twitter 联系到作者。
Majesty Diffusion支持保存、分享、调用设定文件,如果你有喜欢的设定,欢迎一并分享出来!
更完善的中文文档正在撰写中,中文社区也即将择日开通,尽请期待 :D
本项目分两个分支:
Dango233 @Dango233 and apolinario (@multimodalart)合作开发的,基于 CompVis' Latent Diffusion Model开发的生成工具。模型大,擅长小尺度(256x256~256x384)下的图像生成,非常擅长生成正确的形状。如有足够显存(16GB),可以通过内建的Upscaling获得更高分辨率的图像。
- Dango233 做了如下变更
- 支持CLIP模型引导,提升生成质量,支持更多风格
- 支持Upscaling(上采样)和Scheduling(步骤编排),允许自定义Diffusion模型的不同生成阶段
- 更好的Cutouts,以及各超参数的随时间变化的编排
- 直接通过Clamp_max进行梯度大小的控制,更直观
- 梯度soft clipping等一系列为提升生成质量的hack
- 线性可变的eta schedule
- 支持Latent diffusion的negative prompt
- 实现了inpainting
- apolinario (@multimodalart)
- 整理Notebook,迁移到Colab并支持本地部署
- 实现了设定的保存、读取功能
- 其他来自社区的贡献
A Dango233 and apolinario (@multimodalart) Colab notebook implementing crowsonkb's V-Objective Diffusion, with the following changes:
- Added Dango233 parallel multi-model diffusion (e.g.: run
cc12m_1
andyfcc_2
at the same time - with or without lerping) - Added Dango233 cuts, augs and attributes scheduling
- Added Dango233 mag and clamp settings
- Added apolinario (@multimodalart) ETA scheduling
- Added nshepperd v-diffusion imagenet512 and danbooru models
- Added dmarx Multi-Modal-Comparators
- Added crowsonkb AVA and Simulacra bot aesthetic models
- Added LAION-AI aesthetic pre-calculated embeddings
- Added open_clip gradient checkpointing
- Added Dango233 inpainting mode
- Added apolinario (@multimodalart) "internal upscaling" (upscales the output with
yfcc_2
oropenimages
) - Added apolinario (@multimodalart) savable settings and setting library (including
defaults
,disco-diffusion-defaults
default settings). Share yours with us too with a pull request!
- Figure out better defaults and add more settings to the settings library (contribute with a PR!)
- Add all notebooks to a single pipeline where on model can be the output of the other (similar to Centipede Diffusion)
- Add all notebooks to the MindsEye UI
- Modularise everything
- Create a command line version
- Add an inpainting UI
- Improve performance, both in speed and VRAM consumption
- More technical issues will be listed on https://github.com/multimodalart/majesty-diffusion/issues
Some functions and methods are from various code masters - including but not limited to advadnoun, crowsonkb, nshepperd, russelldc, Dango233 and many others