forked from ocaml-flambda/flambda-backend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshared_heap.c
1467 lines (1242 loc) · 45.4 KB
/
shared_heap.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**************************************************************************/
/* */
/* OCaml */
/* */
/* KC Sivaramakrishnan, Indian Institute of Technology, Madras */
/* Stephen Dolan, University of Cambridge */
/* */
/* Copyright 2015 Indian Institute of Technology, Madras */
/* Copyright 2015 University of Cambridge */
/* */
/* All rights reserved. This file is distributed under the terms of */
/* the GNU Lesser General Public License version 2.1, with the */
/* special exception on linking described in the file LICENSE. */
/* */
/**************************************************************************/
#define CAML_INTERNALS
#include <stdlib.h>
#include <string.h>
#include "caml/addrmap.h"
#include "caml/custom.h"
#include "caml/runtime_events.h"
#include "caml/fail.h"
#include "caml/fiber.h" /* for verification */
#include "caml/gc.h"
#include "caml/globroots.h"
#include "caml/major_gc.h"
#include "caml/memory.h"
#include "caml/mlvalues.h"
#include "caml/platform.h"
#include "caml/roots.h"
#include "caml/shared_heap.h"
#include "caml/sizeclasses.h"
#include "caml/startup_aux.h"
#include "caml/weak.h"
CAMLexport atomic_uintnat caml_compactions_count;
typedef unsigned int sizeclass;
/* Initial MARKED, UNMARKED, and GARBAGE values; any permutation would work */
struct global_heap_state caml_global_heap_state = {
0 << HEADER_COLOR_SHIFT,
1 << HEADER_COLOR_SHIFT,
2 << HEADER_COLOR_SHIFT,
};
typedef struct pool {
struct pool* next;
value* next_obj;
caml_domain_state* owner;
sizeclass sz;
} pool;
CAML_STATIC_ASSERT(sizeof(pool) == Bsize_wsize(POOL_HEADER_WSIZE));
#define POOL_SLAB_WOFFSET(sz) (POOL_HEADER_WSIZE + wastage_sizeclass[sz])
#define POOL_FIRST_BLOCK(p, sz) ((header_t*)(p) + POOL_SLAB_WOFFSET(sz))
#define POOL_END(p) ((header_t*)(p) + POOL_WSIZE)
#define POOL_BLOCKS(p) ((POOL_WSIZE - POOL_HEADER_WSIZE) / \
wsize_sizeclass[(p)->sz])
typedef struct large_alloc {
caml_domain_state* owner;
struct large_alloc* next;
} large_alloc;
CAML_STATIC_ASSERT(sizeof(large_alloc) % sizeof(value) == 0);
#define LARGE_ALLOC_HEADER_SZ sizeof(large_alloc)
static struct {
caml_plat_mutex lock;
pool* free;
/* Mapped but not yet active pools */
uintnat fresh_pools;
char* next_fresh_pool;
/* Count of all pools in use across all domains and the global lists below.
Does not include unused pools ('free' above) or freshly allocated pools
('next_fresh_pool' above). */
uintnat active_pools;
/* these only contain swept memory of terminated domains*/
struct heap_stats stats;
pool* global_avail_pools[NUM_SIZECLASSES];
pool* global_full_pools[NUM_SIZECLASSES];
large_alloc* global_large;
} pool_freelist = {
CAML_PLAT_MUTEX_INITIALIZER,
NULL,
0,
NULL,
0,
{ 0, },
{ 0, },
{ 0, },
NULL
};
/* readable and writable only by the current thread */
struct caml_heap_state {
pool* avail_pools[NUM_SIZECLASSES];
pool* full_pools[NUM_SIZECLASSES];
pool* unswept_avail_pools[NUM_SIZECLASSES];
pool* unswept_full_pools[NUM_SIZECLASSES];
large_alloc* swept_large;
large_alloc* unswept_large;
sizeclass next_to_sweep;
caml_domain_state* owner;
struct heap_stats stats;
};
struct compact_pool_stat {
int free_blocks;
int live_blocks;
};
/* You need to hold the [pool_freelist] lock to call these functions. */
static void orphan_heap_stats_with_lock(struct caml_heap_state *);
static void adopt_pool_stats_with_lock(struct caml_heap_state *,
pool *, sizeclass);
struct caml_heap_state* caml_init_shared_heap (void) {
int i;
struct caml_heap_state* heap;
heap = caml_stat_alloc_noexc(sizeof(struct caml_heap_state));
if(heap != NULL) {
for (i = 0; i<NUM_SIZECLASSES; i++) {
heap->avail_pools[i] = heap->full_pools[i] =
heap->unswept_avail_pools[i] = heap->unswept_full_pools[i] = 0;
}
heap->next_to_sweep = 0;
heap->swept_large = NULL;
heap->unswept_large = NULL;
heap->owner = Caml_state;
memset(&heap->stats, 0, sizeof(heap->stats));
}
return heap;
}
static int move_all_pools(pool** src, pool** dst, caml_domain_state* new_owner){
int count = 0;
while (*src) {
pool* p = *src;
*src = p->next;
p->owner = new_owner;
p->next = *dst;
*dst = p;
count++;
}
return count;
}
void caml_teardown_shared_heap(struct caml_heap_state* heap) {
int i;
int released = 0, released_large = 0;
caml_plat_lock(&pool_freelist.lock);
for (i = 0; i < NUM_SIZECLASSES; i++) {
released +=
move_all_pools(&heap->avail_pools[i],
&pool_freelist.global_avail_pools[i], NULL);
released +=
move_all_pools(&heap->full_pools[i],
&pool_freelist.global_full_pools[i], NULL);
/* should be swept by now */
CAMLassert(!heap->unswept_avail_pools[i]);
CAMLassert(!heap->unswept_full_pools[i]);
}
CAMLassert(!heap->unswept_large);
while (heap->swept_large) {
large_alloc* a = heap->swept_large;
heap->swept_large = a->next;
a->next = pool_freelist.global_large;
pool_freelist.global_large = a;
released_large++;
}
orphan_heap_stats_with_lock(heap);
caml_plat_unlock(&pool_freelist.lock);
caml_stat_free(heap);
caml_gc_log("Shutdown shared heap. Released %d active pools, %d large",
released, released_large);
}
/* Allocating and deallocating pools from the global freelist. */
static pool* pool_acquire(struct caml_heap_state* local) {
pool* r;
caml_plat_lock(&pool_freelist.lock);
r = pool_freelist.free;
if (r) {
pool_freelist.free = r->next;
} else {
if (pool_freelist.fresh_pools == 0) {
uintnat new_pools = pool_freelist.active_pools * 15 / 100;
if (new_pools < 8) new_pools = 8;
void* mem = caml_mem_map(Bsize_wsize(POOL_WSIZE) * new_pools, 0);
if (mem) {
pool_freelist.fresh_pools = new_pools;
pool_freelist.next_fresh_pool = mem;
}
}
if (pool_freelist.fresh_pools > 0) {
r = (pool*)pool_freelist.next_fresh_pool;
pool_freelist.next_fresh_pool += Bsize_wsize(POOL_WSIZE);
pool_freelist.fresh_pools --;
r->next = NULL;
r->owner = NULL;
}
}
if (r) {
pool_freelist.active_pools ++;
CAMLassert(r->owner == NULL);
}
caml_plat_unlock(&pool_freelist.lock);
return r;
}
/* release [pool] to the current free list of pools */
static void pool_release(struct caml_heap_state* local,
pool* pool,
sizeclass sz)
{
pool->owner = NULL;
CAMLassert(pool->sz == sz);
local->stats.pool_words -= POOL_WSIZE;
local->stats.pool_frag_words -= POOL_HEADER_WSIZE + wastage_sizeclass[sz];
caml_plat_lock(&pool_freelist.lock);
pool->next = pool_freelist.free;
pool_freelist.free = pool;
pool_freelist.active_pools--;
caml_plat_unlock(&pool_freelist.lock);
}
/* free the memory of [pool], giving it back to the OS */
static void pool_free(struct caml_heap_state* local,
pool* pool,
sizeclass sz)
{
CAMLassert(pool->sz == sz);
local->stats.pool_words -= POOL_WSIZE;
local->stats.pool_frag_words -= POOL_HEADER_WSIZE + wastage_sizeclass[sz];
caml_mem_unmap(pool, Bsize_wsize(POOL_WSIZE));
}
static void calc_pool_stats(pool* a, sizeclass sz, struct heap_stats* s)
{
header_t* p = POOL_FIRST_BLOCK(a, sz);
header_t* end = POOL_END(a);
mlsize_t wh = wsize_sizeclass[sz];
s->pool_frag_words += POOL_SLAB_WOFFSET(sz);
while (p + wh <= end) {
header_t hd = (header_t)atomic_load_relaxed((atomic_uintnat*)p);
if (hd) {
s->pool_live_words += Whsize_hd(hd);
s->pool_frag_words += wh - Whsize_hd(hd);
s->pool_live_blocks++;
}
p += wh;
}
CAMLassert(end == p);
s->pool_words += POOL_WSIZE;
}
/* Initialize a pool and its object freelist */
Caml_inline void pool_initialize(pool* r,
sizeclass sz,
caml_domain_state* owner)
{
mlsize_t wh = wsize_sizeclass[sz];
header_t* p = POOL_FIRST_BLOCK(r, sz);
header_t* end = POOL_END(r);
r->next = 0;
r->owner = owner;
r->next_obj = 0;
r->sz = sz;
p[0] = 0;
p[1] = 0;
p += wh;
while (p + wh <= end) {
p[0] = 0; /* zero header indicates free object */
p[1] = (value)(p - wh);
#ifdef DEBUG
for (int w = 2 ; w < wh; w++) {
p[w] = Debug_free_major;
}
#endif
p += wh;
}
CAMLassert(p == end);
CAMLassert((uintptr_t)end % Cache_line_bsize == 0);
r->next_obj = (value*)(p - wh);
}
/* Allocating an object from a pool */
static intnat pool_sweep(struct caml_heap_state* local,
pool**,
sizeclass sz ,
int release_to_global_pool);
/* Adopt pool from the pool_freelist avail and full pools
to satisfy an allocation */
static pool* pool_global_adopt(struct caml_heap_state* local, sizeclass sz)
{
pool* r = NULL;
int adopted_pool = 0;
/* probably no available pools out there to be had */
if( !pool_freelist.global_avail_pools[sz] &&
!pool_freelist.global_full_pools[sz] )
return NULL;
/* Haven't managed to find a pool locally, try the global ones */
caml_plat_lock(&pool_freelist.lock);
if( pool_freelist.global_avail_pools[sz] ) {
r = pool_freelist.global_avail_pools[sz];
if( r ) {
pool_freelist.global_avail_pools[sz] = r->next;
r->next = 0;
local->avail_pools[sz] = r;
adopt_pool_stats_with_lock(local, r, sz);
#ifdef DEBUG
{
value* next_obj = r->next_obj;
while( next_obj ) {
CAMLassert(next_obj[0] == 0);
next_obj = (value*)next_obj[1];
}
}
#endif
}
}
/* There were no global avail pools, so let's adopt one of the full ones and
try our luck sweeping it later on */
if( !r ) {
r = pool_freelist.global_full_pools[sz];
if( r ) {
pool_freelist.global_full_pools[sz] = r->next;
r->next = local->full_pools[sz];
local->full_pools[sz] = r;
adopt_pool_stats_with_lock(local, r, sz);
adopted_pool = 1;
r = 0; // this pool is full
}
}
caml_plat_unlock(&pool_freelist.lock);
if( !r && adopted_pool ) {
Caml_state->major_work_done_between_slices +=
pool_sweep(local, &local->full_pools[sz], sz, 0);
r = local->avail_pools[sz];
}
return r;
}
/* Allocating an object from a pool */
static pool* pool_find(struct caml_heap_state* local, sizeclass sz) {
pool* r;
/* Hopefully we have a pool we can use directly */
r = local->avail_pools[sz];
if (r) return r;
/* Otherwise, try to sweep until we find one */
while (!local->avail_pools[sz] && local->unswept_avail_pools[sz]) {
Caml_state->major_work_done_between_slices +=
pool_sweep(local, &local->unswept_avail_pools[sz], sz, 0);
}
r = local->avail_pools[sz];
if (r) return r;
/* Haven't managed to find a pool locally, try the global ones */
r = pool_global_adopt(local, sz);
if (r) return r;
/* Failing that, we need to allocate a new pool */
r = pool_acquire(local);
if (!r) return 0; /* if we can't allocate, give up */
local->stats.pool_words += POOL_WSIZE;
if (local->stats.pool_words > local->stats.pool_max_words)
local->stats.pool_max_words = local->stats.pool_words;
local->stats.pool_frag_words += POOL_HEADER_WSIZE + wastage_sizeclass[sz];
/* Having allocated a new pool, set it up for size sz */
local->avail_pools[sz] = r;
pool_initialize(r, sz, local->owner);
return r;
}
static void* pool_allocate(struct caml_heap_state* local, sizeclass sz) {
value* p;
value* next;
pool* r = pool_find(local, sz);
if (!r) return 0;
p = r->next_obj;
next = (value*)p[1];
r->next_obj = next;
CAMLassert(p[0] == 0);
if (!next) {
local->avail_pools[sz] = r->next;
r->next = local->full_pools[sz];
local->full_pools[sz] = r;
}
CAMLassert(r->next_obj == 0 || *r->next_obj == 0);
return p;
}
static void* large_allocate(struct caml_heap_state* local, mlsize_t sz) {
large_alloc* a = malloc(sz + LARGE_ALLOC_HEADER_SZ);
if (!a) return NULL;
local->stats.large_words += Wsize_bsize(sz + LARGE_ALLOC_HEADER_SZ);
if (local->stats.large_words > local->stats.large_max_words)
local->stats.large_max_words = local->stats.large_words;
local->stats.large_blocks++;
a->owner = local->owner;
a->next = local->swept_large;
local->swept_large = a;
return (char*)a + LARGE_ALLOC_HEADER_SZ;
}
value* caml_shared_try_alloc(struct caml_heap_state* local, mlsize_t wosize,
tag_t tag, reserved_t reserved)
{
mlsize_t whsize = Whsize_wosize(wosize);
value* p;
uintnat colour;
CAMLassert (wosize > 0);
CAMLassert (tag != Infix_tag);
CAML_EV_ALLOC(wosize);
if (whsize <= SIZECLASS_MAX) {
struct heap_stats* s;
sizeclass sz = sizeclass_wsize[whsize];
CAMLassert(wsize_sizeclass[sz] >= whsize);
p = pool_allocate(local, sz);
if (!p) return 0;
s = &local->stats;
s->pool_live_blocks++;
s->pool_live_words += whsize;
s->pool_frag_words += wsize_sizeclass[sz] - whsize;
} else {
p = large_allocate(local, Bsize_wsize(whsize));
if (!p) return 0;
}
colour = caml_global_heap_state.MARKED;
Hd_hp (p) = Make_header_with_reserved(wosize, tag, colour, reserved);
#ifdef DEBUG
{
int i;
for (i = 0; i < wosize; i++) {
Field(Val_hp(p), i) = Debug_free_major;
}
}
#endif
return p;
}
/* Sweeping */
static intnat pool_sweep(struct caml_heap_state* local, pool** plist,
sizeclass sz, int release_to_global_pool) {
intnat work = 0;
pool* a = *plist;
if (!a) return 0;
*plist = a->next;
{
header_t* p = POOL_FIRST_BLOCK(a, sz);
header_t* end = POOL_END(a);
mlsize_t wh = wsize_sizeclass[sz];
int all_used = 1;
struct heap_stats* s = &local->stats;
while (p + wh <= end) {
header_t hd = (header_t)atomic_load_relaxed((atomic_uintnat*)p);
if (hd == 0) {
/* already on freelist */
all_used = 0;
} else if (Has_status_hd(hd, caml_global_heap_state.GARBAGE)) {
CAMLassert(Whsize_hd(hd) <= wh);
if (Tag_hd (hd) == Custom_tag) {
void (*final_fun)(value) = Custom_ops_val(Val_hp(p))->finalize;
if (final_fun != NULL) final_fun(Val_hp(p));
}
/* add to freelist */
atomic_store_relaxed((atomic_uintnat*)p, 0);
p[1] = (value)a->next_obj;
CAMLassert(Is_block((value)p));
#ifdef DEBUG
{
int i;
mlsize_t wo = Wosize_whsize(wh);
for (i = 1; i < wo; i++) {
Field(Val_hp(p), i) = Debug_free_major;
}
}
#endif
a->next_obj = (value*)p;
all_used = 0;
/* update stats */
s->pool_live_blocks--;
s->pool_live_words -= Whsize_hd(hd);
local->owner->swept_words += Whsize_hd(hd);
s->pool_frag_words -= (wh - Whsize_hd(hd));
} else {
/* still live, the pool can't be released to the global freelist */
release_to_global_pool = 0;
}
p += wh;
work += wh;
}
if (release_to_global_pool) {
pool_release(local, a, sz);
} else {
pool** list = all_used ? &local->full_pools[sz] : &local->avail_pools[sz];
a->next = *list;
*list = a;
}
}
return work;
}
static intnat large_alloc_sweep(struct caml_heap_state* local) {
value* p;
header_t hd;
large_alloc* a = local->unswept_large;
if (!a) return 0;
local->unswept_large = a->next;
p = (value*)((char*)a + LARGE_ALLOC_HEADER_SZ);
hd = (header_t)*p;
if (Has_status_hd(hd, caml_global_heap_state.GARBAGE)) {
if (Tag_hd (hd) == Custom_tag) {
void (*final_fun)(value) = Custom_ops_val(Val_hp(p))->finalize;
if (final_fun != NULL) final_fun(Val_hp(p));
}
local->stats.large_words -=
Whsize_hd(hd) + Wsize_bsize(LARGE_ALLOC_HEADER_SZ);
local->owner->swept_words +=
Whsize_hd(hd) + Wsize_bsize(LARGE_ALLOC_HEADER_SZ);
local->stats.large_blocks--;
free(a);
} else {
a->next = local->swept_large;
local->swept_large = a;
}
return Whsize_hd(hd);
}
static void verify_swept(struct caml_heap_state*);
intnat caml_sweep(struct caml_heap_state* local, intnat work) {
/* Sweep local pools */
while (work > 0 && local->next_to_sweep < NUM_SIZECLASSES) {
sizeclass sz = local->next_to_sweep;
intnat full_sweep_work = 0;
intnat avail_sweep_work =
pool_sweep(local, &local->unswept_avail_pools[sz], sz, 1);
work -= avail_sweep_work;
if (work > 0) {
full_sweep_work = pool_sweep(local,
&local->unswept_full_pools[sz],
sz, 1);
work -= full_sweep_work;
}
if(full_sweep_work+avail_sweep_work == 0) {
local->next_to_sweep++;
}
}
/* Sweep global pools */
while (work > 0 && local->unswept_large) {
work -= large_alloc_sweep(local);
}
if (caml_params->verify_heap && work > 0) {
/* sweeping is complete, check everything worked */
verify_swept(local);
}
return work;
}
uintnat caml_heap_size(struct caml_heap_state* local) {
return Bsize_wsize(local->stats.pool_words + local->stats.large_words);
}
uintnat caml_top_heap_words(struct caml_heap_state* local) {
/* FIXME: summing two maximums computed at different points in time
returns an incorrect result. */
return local->stats.pool_max_words + local->stats.large_max_words;
}
uintnat caml_heap_blocks(struct caml_heap_state* local) {
return local->stats.pool_live_blocks + local->stats.large_blocks;
}
void caml_redarken_pool(struct pool* r, scanning_action f, void* fdata) {
mlsize_t wh = wsize_sizeclass[r->sz];
header_t* p = POOL_FIRST_BLOCK(r, r->sz);
header_t* end = POOL_END(r);
while (p + wh <= end) {
header_t hd = p[0];
if (hd != 0 && Has_status_hd(hd, caml_global_heap_state.MARKED)) {
f(fdata, Val_hp(p), 0);
}
p += wh;
}
}
/* Heap and freelist stats */
/* Move the given heap stats to the orphan pools.
You need to hold the [pool_freelist] lock. */
static void orphan_heap_stats_with_lock(struct caml_heap_state *heap) {
caml_accum_heap_stats(&pool_freelist.stats, &heap->stats);
memset(&heap->stats, 0, sizeof(heap->stats));
}
/* The stats for an adopted pool are moved from the free pool stats to
the heap stats of the adopting domain.
You need to hold the [pool_freelist] lock. */
static void adopt_pool_stats_with_lock(
struct caml_heap_state* adopter, pool *r, sizeclass sz)
{
struct heap_stats pool_stats = { 0, };
calc_pool_stats(r, sz, &pool_stats);
caml_accum_heap_stats(&adopter->stats, &pool_stats);
caml_remove_heap_stats(&pool_freelist.stats, &pool_stats);
}
/* Move the stats of all orphan pools into the given heap.
You need to hold the [pool_freelist] lock. */
static void adopt_all_pool_stats_with_lock(struct caml_heap_state *adopter) {
caml_accum_heap_stats(&adopter->stats, &pool_freelist.stats);
memset(&pool_freelist.stats, 0, sizeof(pool_freelist.stats));
}
void caml_collect_heap_stats_sample(
struct caml_heap_state* local,
struct heap_stats* sample)
{
*sample = local->stats;
}
/* Add the orphan pool stats to a stats accumulator. */
void caml_accum_orphan_heap_stats(struct heap_stats* acc)
{
caml_plat_lock(&pool_freelist.lock);
caml_accum_heap_stats(acc, &pool_freelist.stats);
caml_plat_unlock(&pool_freelist.lock);
}
/* Atoms */
static const header_t atoms[256] = {
#define A(i) Make_header(0, i, NOT_MARKABLE)
A(0),A(1),A(2),A(3),A(4),A(5),A(6),A(7),A(8),A(9),A(10),
A(11),A(12),A(13),A(14),A(15),A(16),A(17),A(18),A(19),A(20),
A(21),A(22),A(23),A(24),A(25),A(26),A(27),A(28),A(29),A(30),
A(31),A(32),A(33),A(34),A(35),A(36),A(37),A(38),A(39),A(40),
A(41),A(42),A(43),A(44),A(45),A(46),A(47),A(48),A(49),A(50),
A(51),A(52),A(53),A(54),A(55),A(56),A(57),A(58),A(59),A(60),
A(61),A(62),A(63),A(64),A(65),A(66),A(67),A(68),A(69),A(70),
A(71),A(72),A(73),A(74),A(75),A(76),A(77),A(78),A(79),A(80),
A(81),A(82),A(83),A(84),A(85),A(86),A(87),A(88),A(89),A(90),
A(91),A(92),A(93),A(94),A(95),A(96),A(97),A(98),A(99),A(100),
A(101),A(102),A(103),A(104),A(105),A(106),A(107),A(108),A(109),
A(110),A(111),A(112),A(113),A(114),A(115),A(116),A(117),A(118),
A(119),A(120),A(121),A(122),A(123),A(124),A(125),A(126),A(127),
A(128),A(129),A(130),A(131),A(132),A(133),A(134),A(135),A(136),
A(137),A(138),A(139),A(140),A(141),A(142),A(143),A(144),A(145),
A(146),A(147),A(148),A(149),A(150),A(151),A(152),A(153),A(154),
A(155),A(156),A(157),A(158),A(159),A(160),A(161),A(162),A(163),
A(164),A(165),A(166),A(167),A(168),A(169),A(170),A(171),A(172),
A(173),A(174),A(175),A(176),A(177),A(178),A(179),A(180),A(181),
A(182),A(183),A(184),A(185),A(186),A(187),A(188),A(189),A(190),
A(191),A(192),A(193),A(194),A(195),A(196),A(197),A(198),A(199),
A(200),A(201),A(202),A(203),A(204),A(205),A(206),A(207),A(208),
A(209),A(210),A(211),A(212),A(213),A(214),A(215),A(216),A(217),
A(218),A(219),A(220),A(221),A(222),A(223),A(224),A(225),A(226),
A(227),A(228),A(229),A(230),A(231),A(232),A(233),A(234),A(235),
A(236),A(237),A(238),A(239),A(240),A(241),A(242),A(243),A(244),
A(245),A(246),A(247),A(248),A(249),A(250),A(251),A(252),A(253),
A(254),A(255)
#undef A
};
CAMLexport value caml_atom(tag_t tag) {
return Val_hp(&atoms[tag]);
}
void caml_init_major_heap (asize_t size) {
}
/* Verify heap invariants.
Verification happens just after the heap is cycled during STW, so
everything should be unmarked. If something reachable marked after
cycling the heap, it means that garbage was reachable beforehand.
*/
struct heap_verify_state {
value* stack;
int stack_len;
int sp;
intnat objs;
struct addrmap seen;
};
struct heap_verify_state* caml_verify_begin (void)
{
struct heap_verify_state init = {0, 0, 0, 0, ADDRMAP_INIT};
struct heap_verify_state* st = caml_stat_alloc(sizeof init);
*st = init;
return st;
}
static void verify_push (void* st_v, value v, volatile value* ignored)
{
struct heap_verify_state* st = st_v;
if (!Is_block(v)) return;
if (st->sp == st->stack_len) {
st->stack_len = st->stack_len * 2 + 100;
st->stack = caml_stat_resize(st->stack,
sizeof(value*) * st->stack_len);
}
st->stack[st->sp++] = v;
}
void caml_verify_root(void* state, value v, volatile value* p)
{
verify_push(state, v, p);
}
static scanning_action_flags verify_scanning_flags = 0;
static void verify_object(struct heap_verify_state* st, value v) {
intnat* entry;
if (!Is_block(v)) return;
CAMLassert (!Is_young(v));
CAMLassert (Hd_val(v));
if (Tag_val(v) == Infix_tag) {
v -= Infix_offset_val(v);
CAMLassert(Tag_val(v) == Closure_tag);
}
entry = caml_addrmap_insert_pos(&st->seen, v);
if (*entry != ADDRMAP_NOT_PRESENT) return;
*entry = 1;
if (Has_status_val(v, NOT_MARKABLE)) return;
st->objs++;
CAMLassert(Has_status_val(v, caml_global_heap_state.UNMARKED));
if (Tag_val(v) == Cont_tag) {
struct stack_info* stk = Ptr_val(Field(v, 0));
if (stk != NULL)
caml_scan_stack(verify_push, verify_scanning_flags, st, stk, 0, NULL);
} else if (Tag_val(v) < No_scan_tag) {
int i = 0;
if (Tag_val(v) == Closure_tag) {
i = Start_env_closinfo(Closinfo_val(v));
}
mlsize_t size = Wosize_val(v);
for (; i < size; i++) {
value f = Field(v, i);
if (Is_block(f)) verify_push(st, f, Op_val(v)+i);
}
}
}
void caml_verify_heap(caml_domain_state *domain) {
struct heap_verify_state* st = caml_verify_begin();
caml_do_roots (&caml_verify_root, verify_scanning_flags, st, domain, 1);
caml_scan_global_roots(&caml_verify_root, st);
while (st->sp) verify_object(st, st->stack[--st->sp]);
caml_addrmap_clear(&st->seen);
caml_stat_free(st->stack);
caml_stat_free(st);
}
/* Compaction starts here. See [caml_compact_heap] for entry. */
/* Given a single value `v`, found at `p`, check if it points to an
evacuated block, and if so update it using the forwarding pointer
created by the compactor. */
static inline void compact_update_value(void* ignored,
value v,
volatile value* p)
{
if (Is_block(v)) {
CAMLassert(!Is_young(v));
tag_t tag = Tag_val(v);
int infix_offset = 0;
if (tag == Infix_tag) {
infix_offset = Infix_offset_val(v);
/* v currently points to an Infix_tag inside of a Closure_tag.
The forwarding pointer we want is in the first field of the
Closure_tag. */
v -= infix_offset;
CAMLassert(Tag_val(v) == Closure_tag);
}
/* non-markable blocks can't move */
if (Has_status_val(v, NOT_MARKABLE))
return;
if (Whsize_val(v) <= SIZECLASS_MAX) {
/* MARKED header status means the location `p` points to a block that
has been evacuated. Use the forwarding pointer in the first field
to update to the new location. */
if (Has_status_val(v, caml_global_heap_state.MARKED)) {
value fwd = Field(v, 0) + infix_offset;
CAMLassert(Is_block(fwd));
CAMLassert(Tag_val(fwd) == tag);
*p = fwd;
}
}
}
}
/* Given a value found at `p` check if it points to an evacuated
block, and if so update it using the forwarding pointer created by
the compactor. */
static inline void compact_update_value_at(volatile value* p)
{
compact_update_value(NULL, *p, p);
}
/* For each pointer in the block pointed to by `p`, check if it points
to an evacuated block and if so update it using the forwarding
pointer created by the compactor. */
static void compact_update_block(header_t* p)
{
header_t hd = Hd_hp(p);
/* We should never be called with a block that has a zero header (this would
indicate a bug in traversing the shared pools). */
CAMLassert(hd != 0);
tag_t tag = Tag_hd(hd);
/* We should never encounter an Infix tag iterating over the shared pools or
large allocations. We could find it in roots but those use
[compact_update_value]. */
CAMLassert(tag != Infix_tag);
if (tag == Cont_tag) {
value stk = Field(Val_hp(p), 0);
if (Ptr_val(stk)) {
caml_scan_stack(&compact_update_value, 0, NULL, Ptr_val(stk), 0, NULL);
}
} else {
uintnat offset = 0;
if (tag == Closure_tag) {
offset = Start_env_closinfo(Closinfo_val(Val_hp(p)));
}
if (tag < No_scan_tag) {
mlsize_t wosz = Wosize_hd(hd);
for (mlsize_t i = offset; i < wosz; i++) {
compact_update_value_at(&Field(Val_hp(p), i));
}
}
}
}
/* Update all the live blocks in a list of pools. */
static void compact_update_pools(pool *cur_pool)
{
while (cur_pool) {
header_t* p = POOL_FIRST_BLOCK(cur_pool, cur_pool->sz);
header_t* end = POOL_END(cur_pool);
mlsize_t wh = wsize_sizeclass[cur_pool->sz];
while (p + wh <= end) {
if (*p &&
Has_status_val(Val_hp(p), caml_global_heap_state.UNMARKED)) {
compact_update_block(p);
}
p += wh;
}
cur_pool = cur_pool->next;
}
}
/* Update all the fields in the list of ephemerons found at `*ephe_p` */
static void compact_update_ephe_list(volatile value *ephe_p)
{
while (*ephe_p) {
compact_update_value_at(ephe_p);
value ephe = *ephe_p;
mlsize_t wosize = Wosize_val(ephe);
compact_update_value_at(&Field(ephe, CAML_EPHE_DATA_OFFSET));
for (int i = CAML_EPHE_FIRST_KEY ; i < wosize ; i++) {
compact_update_value_at(&Field(ephe, i));
}
ephe_p = &Field(ephe, CAML_EPHE_LINK_OFFSET);
}
}
/* Compact the heap for the given domain. Run in parallel for all domains. */
void caml_compact_heap(caml_domain_state* domain_state,
int participating_count,
caml_domain_state** participants)
{
caml_gc_log("Compacting heap start");
CAML_EV_BEGIN(EV_COMPACT);
/* Warning: caml_compact_heap must only be called from
[cycle_all_domains_callback] in major_gc.c as there are
very specific conditions the compaction algorithm expects.
The following code implements a compaction algorithm that is similar to
Edward's Two-Finger algorithm from the original 1974 LISP book (The
Programming Language LISP). At a high level the algorithm works as a series
of parallel (using all running domains) phases separated by global barriers:
1. For each size class
a. Compute the number of live blocks in partially filled pools
b. Keep enough pools to fully contain the number of live blocks and
set the rest to be evacuated
c. For each live block in each pool in the evacuation list,
allocate and copy into a non-evacuating pool.
2. Proceed through the roots and the heap, updating pointers to evacuated
blocks to point to the new location of the block. Update finalisers and
ephemerons too.
3. Go through pools evacuated and release them. Finally free all but
one pool in the freelist.
4. One domain needs to release the pools in the freelist back to the OS.
The algorithm requires one full pass through the whole heap (pools and large
allocations) to rewrite pointers, as well as two passes through the
partially-occupied pools in the heap to compute the number of live blocks
and evacuate them.
*/
/* First phase. Here we compute the number of live blocks in partially
filled pools, determine pools to be evacuated and then evacuate from them.
For the first phase we need not consider full pools, they
cannot be evacuated to or from. */
caml_global_barrier();
CAML_EV_BEGIN(EV_COMPACT_EVACUATE);