forked from ocaml-flambda/flambda-backend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclosure_conversion.ml
766 lines (749 loc) · 32 KB
/
closure_conversion.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Pierre Chambart, OCamlPro *)
(* Mark Shinwell and Leo White, Jane Street Europe *)
(* *)
(* Copyright 2013--2016 OCamlPro SAS *)
(* Copyright 2014--2016 Jane Street Group LLC *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
[@@@ocaml.warning "+a-4-9-30-40-41-42-66-69"]
open! Int_replace_polymorphic_compare
module Env = Closure_conversion_aux.Env
module Function_decls = Closure_conversion_aux.Function_decls
module Function_decl = Function_decls.Function_decl
module Names = Internal_variable_names
let name_expr = Flambda_utils.name_expr
let name_expr_from_var = Flambda_utils.name_expr_from_var
type t = {
current_unit : Compilation_unit.t;
filename : string;
backend : (module Backend_intf.S);
mutable imported_symbols : Symbol.Set.t;
mutable declared_symbols : (Symbol.t * Flambda.constant_defining_value) list;
}
let add_default_argument_wrappers lam =
let defs_are_all_functions (defs : (_ * Lambda.lambda) list) =
List.for_all (function (_, Lambda.Lfunction _) -> true | _ -> false) defs
in
let f (lam : Lambda.lambda) : Lambda.lambda =
match lam with
| Llet (( Strict | Alias | StrictOpt), _k, id,
Lfunction {kind; params; body = fbody; attr; loc;
mode; region}, body) ->
begin match
Simplif.split_default_wrapper ~id ~kind ~params
~body:fbody ~return:Lambda.layout_top ~attr ~loc ~mode ~region
with
| [fun_id, def] -> Llet (Alias, Lambda.layout_function, fun_id, def, body)
| [fun_id, def; inner_fun_id, def_inner] ->
Llet (Alias, Lambda.layout_function, inner_fun_id, def_inner,
Llet (Alias, Lambda.layout_function, fun_id, def, body))
| _ -> assert false
end
| Lletrec (defs, body) as lam ->
if defs_are_all_functions defs then
let defs =
List.flatten
(List.map
(function
| (id, Lambda.Lfunction {kind; params; body; attr; loc;
mode; region}) ->
Simplif.split_default_wrapper ~id ~kind ~params ~body
~return:Lambda.layout_top ~attr ~loc ~mode ~region
| _ -> assert false)
defs)
in
Lletrec (defs, body)
else lam
| lam -> lam
in
Lambda.map f lam
(** Generate a wrapper ("stub") function that accepts a tuple argument and
calls another function with arguments extracted in the obvious
manner from the tuple. *)
let tupled_function_call_stub original_params unboxed_version ~closure_bound_var ~region
: Flambda.function_declaration =
let tuple_param_var = Variable.rename unboxed_version in
let params = List.map (fun p -> Variable.rename p) original_params in
let call : Flambda.t =
Apply ({
func = unboxed_version;
args = params;
(* CR-someday mshinwell for mshinwell: investigate if there is some
redundancy here (func is also unboxed_version) *)
kind = Direct (Closure_id.wrap unboxed_version);
dbg = Debuginfo.none;
reg_close = Rc_normal;
mode = if region then Lambda.alloc_heap else Lambda.alloc_local;
inlined = Default_inlined;
specialise = Default_specialise;
probe = None;
})
in
let _, body =
List.fold_left (fun (pos, body) param ->
let lam : Flambda.named =
Prim (Pfield pos, [tuple_param_var], Debuginfo.none)
in
pos + 1, Flambda.create_let param lam body)
(0, call) params
in
(* Tupled functions are always Alloc_heap. See translcore.ml *)
let alloc_mode = Lambda.alloc_heap in
let tuple_param = Parameter.wrap tuple_param_var alloc_mode Lambda.layout_block in
Flambda.create_function_declaration ~params:[tuple_param] ~alloc_mode ~region
~body ~stub:true ~inline:Default_inline
~specialise:Default_specialise ~check:Default_check ~is_a_functor:false
~closure_origin:(Closure_origin.create (Closure_id.wrap closure_bound_var))
~poll:Default_poll (* don't propogate attribute to wrappers *)
let register_const t (constant:Flambda.constant_defining_value) name
: Flambda.constant_defining_value_block_field * Internal_variable_names.t =
let var = Variable.create name in
let symbol = Symbol_utils.Flambda.for_variable var in
t.declared_symbols <- (symbol, constant) :: t.declared_symbols;
Symbol symbol, name
let rec declare_const t (const : Lambda.structured_constant)
: Flambda.constant_defining_value_block_field * Internal_variable_names.t =
match const with
| Const_base (Const_int c) -> (Const (Int c), Names.const_int)
| Const_base (Const_char c) -> (Const (Char c), Names.const_char)
| Const_base (Const_string (s, _, _)) ->
let const, name =
if Config.safe_string then
(Flambda.Allocated_const (Immutable_string s),
Names.const_immstring)
else
(Flambda.Allocated_const (String s),
Names.const_string)
in
register_const t const name
| Const_base (Const_float c) ->
register_const t
(Allocated_const (Float (float_of_string c)))
Names.const_float
| Const_base (Const_int32 c) ->
register_const t (Allocated_const (Int32 c))
Names.const_int32
| Const_base (Const_int64 c) ->
register_const t (Allocated_const (Int64 c))
Names.const_int64
| Const_base (Const_nativeint c) ->
register_const t (Allocated_const (Nativeint c)) Names.const_nativeint
| Const_immstring c ->
register_const t (Allocated_const (Immutable_string c))
Names.const_immstring
| Const_float_array c | Const_float_block c ->
register_const t
(Allocated_const (Immutable_float_array (List.map float_of_string c)))
Names.const_float_array
| Const_block (tag, consts) ->
let const : Flambda.constant_defining_value =
Block (Tag.create_exn tag,
List.map (fun c -> fst (declare_const t c)) consts)
in
register_const t const Names.const_block
let close_const t (const : Lambda.structured_constant)
: Flambda.named * Internal_variable_names.t =
match declare_const t const with
| Const c, name ->
Const c, name
| Symbol s, name ->
Symbol s, name
let lambda_const_bool b : Lambda.structured_constant =
if b then
Lambda.const_int 1
else
Lambda.const_int 0
let lambda_const_int i : Lambda.structured_constant =
Const_base (Const_int i)
let rec close t env (lam : Lambda.lambda) : Flambda.t =
match lam with
| Lvar id ->
begin match Env.find_var_exn env id with
| var, _kind -> Var var
| exception Not_found ->
Misc.fatal_errorf "Closure_conversion.close: unbound identifier %a"
Ident.print id
end
| Lmutvar id ->
begin match Env.find_mutable_var_exn env id with
| mut_var, _kind ->
name_expr (Read_mutable mut_var) ~name:Names.read_mutable
| exception Not_found ->
Misc.fatal_errorf
"Closure_conversion.close: unbound mutable identifier %a"
Ident.print id
end
| Lconst cst ->
let cst, name = close_const t cst in
name_expr cst ~name
| Llet ((Strict | Alias | StrictOpt), layout, id, defining_expr, body) ->
let var = Variable.create_with_same_name_as_ident id in
let defining_expr =
close_let_bound_expression t var env defining_expr
in
let body = close t (Env.add_var env id var layout) body in
Flambda.create_let var defining_expr body
| Lmutlet (block_kind, id, defining_expr, body) ->
let mut_var = Mutable_variable.create_with_same_name_as_ident id in
let var = Variable.create_with_same_name_as_ident id in
let defining_expr =
close_let_bound_expression t var env defining_expr
in
let body = close t (Env.add_mutable_var env id mut_var block_kind) body in
Flambda.create_let var defining_expr
(Let_mutable
{ var = mut_var;
initial_value = var;
body;
contents_kind = block_kind })
| Lfunction { kind; params; body; attr; loc; mode; region } ->
let name = Names.anon_fn_with_loc loc in
let closure_bound_var =
let debug_info = Debuginfo.from_location loc in
Variable.create ~debug_info name
in
(* CR-soon mshinwell: some of this is now very similar to the let rec case
below *)
let set_of_closures_var = Variable.create Names.set_of_closures in
let set_of_closures =
let decl =
Function_decl.create ~let_rec_ident:None ~closure_bound_var ~kind ~mode
~region ~params ~body ~attr ~loc
in
close_functions t env (Function_decls.create [decl])
in
let project_closure : Flambda.project_closure =
{ set_of_closures = set_of_closures_var;
closure_id = Closure_id.wrap closure_bound_var;
}
in
Flambda.create_let set_of_closures_var set_of_closures
(name_expr (Project_closure (project_closure)) ~name)
| Lapply { ap_func; ap_args; ap_loc; ap_region_close; ap_mode;
ap_tailcall = _; ap_inlined; ap_specialised; ap_probe; } ->
Lift_code.lifting_helper (close_list t env ap_args)
~evaluation_order:`Right_to_left
~name:Names.apply_arg
~create_body:(fun args ->
let func = close t env ap_func in
let func_var = Variable.create Names.apply_funct in
Flambda.create_let func_var (Expr func)
(Apply ({
func = func_var;
args;
kind = Indirect;
dbg = Debuginfo.from_location ap_loc;
reg_close = ap_region_close;
mode = ap_mode;
inlined = ap_inlined;
specialise = ap_specialised;
probe = ap_probe;
})))
| Lletrec (defs, body) ->
let env =
List.fold_right (fun (id, _) env ->
Env.add_var env id (Variable.create_with_same_name_as_ident id) Lambda.layout_top)
defs env
in
let function_declarations =
(* Identify any bindings in the [let rec] that are functions. These
will be named after the corresponding identifier in the [let rec]. *)
List.map (function
| (let_rec_ident,
Lambda.Lfunction { kind; params; body; attr; loc; mode; region }) ->
let closure_bound_var =
let debug_info = Debuginfo.from_location loc in
Variable.create_with_same_name_as_ident ~debug_info let_rec_ident
in
let function_declaration =
Function_decl.create ~let_rec_ident:(Some let_rec_ident)
~closure_bound_var ~kind ~mode ~region
~params ~body ~attr ~loc
in
Some function_declaration
| _ -> None)
defs
in
begin match
Misc.Stdlib.List.some_if_all_elements_are_some function_declarations
with
| Some function_declarations ->
(* When all the bindings are (syntactically) functions, we can
eliminate the [let rec] construction, instead producing a normal
[Let] that binds a set of closures containing all of the functions.
*)
(* CR-someday lwhite: This is a very syntactic criteria. Adding an
unused value to a set of recursive bindings changes how
functions are represented at runtime. *)
let set_of_closures_var = Variable.create (Names.set_of_closures) in
let set_of_closures =
close_functions t env (Function_decls.create function_declarations)
in
let body =
List.fold_left (fun body decl ->
let let_rec_ident = Function_decl.let_rec_ident decl in
let closure_bound_var = Function_decl.closure_bound_var decl in
let let_bound_var, _kind = Env.find_var env let_rec_ident in
(* Inside the body of the [let], each function is referred to by
a [Project_closure] expression, which projects from the set of
closures. *)
(Flambda.create_let let_bound_var
(Project_closure {
set_of_closures = set_of_closures_var;
closure_id = Closure_id.wrap closure_bound_var;
})
body))
(close t env body) function_declarations
in
Flambda.create_let set_of_closures_var set_of_closures body
| None ->
(* If the condition above is not satisfied, we build a [Let_rec]
expression; any functions bound by it will have their own
individual closures. *)
let defs =
List.map (fun (id, def) ->
let var, _kind = Env.find_var env id in
var, close_let_bound_expression t ~let_rec_ident:id var env def)
defs
in
Let_rec (defs, close t env body)
end
| Lsend (kind, meth, obj, args, reg_close, mode, loc, _layout) ->
let meth_var = Variable.create Names.meth in
let obj_var = Variable.create Names.obj in
let dbg = Debuginfo.from_location loc in
Flambda.create_let meth_var (Expr (close t env meth))
(Flambda.create_let obj_var (Expr (close t env obj))
(Lift_code.lifting_helper (close_list t env args)
~evaluation_order:`Right_to_left
~name:Names.send_arg
~create_body:(fun args ->
Send { kind; meth = meth_var; obj = obj_var; args;
dbg; reg_close; mode })))
| Lprim ((Pdivint Safe | Pmodint Safe
| Pdivbint { is_safe = Safe } | Pmodbint { is_safe = Safe }) as prim,
[arg1; arg2], loc)
when not !Clflags.unsafe ->
let arg2 = close t env arg2 in
let arg1 = close t env arg1 in
let numerator = Variable.create Names.numerator in
let denominator = Variable.create Names.denominator in
let zero = Variable.create Names.zero in
let is_zero = Variable.create Names.is_zero in
let exn = Variable.create Names.division_by_zero in
let exn_symbol = Symbol.for_predef_ident Predef.ident_division_by_zero in
let dbg = Debuginfo.from_location loc in
let zero_const : Flambda.named =
match prim with
| Pdivint _ | Pmodint _ ->
Const (Int 0)
| Pdivbint { size = Pint32 } | Pmodbint { size = Pint32 } ->
Allocated_const (Int32 0l)
| Pdivbint { size = Pint64 } | Pmodbint { size = Pint64 } ->
Allocated_const (Int64 0L)
| Pdivbint { size = Pnativeint } | Pmodbint { size = Pnativeint } ->
Allocated_const (Nativeint 0n)
| _ -> assert false
in
let prim : Clambda_primitives.primitive =
match prim with
| Pdivint _ -> Pdivint Unsafe
| Pmodint _ -> Pmodint Unsafe
| Pdivbint { size; mode } -> Pdivbint { size; is_safe = Unsafe; mode }
| Pmodbint { size; mode } -> Pmodbint { size; is_safe = Unsafe; mode }
| _ -> assert false
in
let comparison : Clambda_primitives.primitive =
match prim with
| Pdivint _ | Pmodint _ -> Pintcomp Ceq
| Pdivbint { size } | Pmodbint { size } -> Pbintcomp (size,Ceq)
| _ -> assert false
in
t.imported_symbols <- Symbol.Set.add exn_symbol t.imported_symbols;
Flambda.create_let zero zero_const
(Flambda.create_let exn (Symbol exn_symbol)
(Flambda.create_let denominator (Expr arg2)
(Flambda.create_let numerator (Expr arg1)
(Flambda.create_let is_zero
(Prim (comparison, [zero; denominator], dbg))
(If_then_else (is_zero,
name_expr (Prim (Praise Raise_regular, [exn], dbg))
~name:Names.dummy,
(* CR-someday pchambart: find the right event.
mshinwell: I briefly looked at this, and couldn't
figure it out.
lwhite: I don't think any of the existing events
are suitable. I had to add a new one for a similar
case in the array data types work.
mshinwell: deferred CR *)
name_expr ~name:Names.result
(Prim (prim, [numerator; denominator], dbg)), Lambda.layout_int))))))
| Lprim ((Pdivint Safe | Pmodint Safe
| Pdivbint { is_safe = Safe } | Pmodbint { is_safe = Safe }), _, _)
when not !Clflags.unsafe ->
Misc.fatal_error "Pdivint / Pmodint must have exactly two arguments"
| Lprim (Psequor, [arg1; arg2], _) ->
let arg1 = close t env arg1 in
let arg2 = close t env arg2 in
let const_true = Variable.create Names.const_true in
let cond = Variable.create Names.cond_sequor in
Flambda.create_let const_true (Const (Int 1))
(Flambda.create_let cond (Expr arg1)
(If_then_else (cond, Var const_true, arg2, Lambda.layout_int)))
| Lprim (Psequand, [arg1; arg2], _) ->
let arg1 = close t env arg1 in
let arg2 = close t env arg2 in
let const_false = Variable.create Names.const_false in
let cond = Variable.create Names.const_sequand in
Flambda.create_let const_false (Const (Int 0))
(Flambda.create_let cond (Expr arg1)
(If_then_else (cond, arg2, Var const_false, Lambda.layout_int)))
| Lprim ((Psequand | Psequor), _, _) ->
Misc.fatal_error "Psequand / Psequor must have exactly two arguments"
| Lprim ((Pbytes_to_string | Pbytes_of_string | Pobj_magic),
[arg], _) ->
close t env arg
| Lprim (Pignore, [arg], _) ->
let var = Variable.create Names.ignore in
let defining_expr =
close_let_bound_expression t var env arg
in
Flambda.create_let var defining_expr
(name_expr (Const (Int 0)) ~name:Names.unit)
| Lprim (Praise kind, [arg], loc) ->
let arg_var = Variable.create Names.raise_arg in
let dbg = Debuginfo.from_location loc in
Flambda.create_let arg_var (Expr (close t env arg))
(name_expr
(Prim (Praise kind, [arg_var], dbg))
~name:Names.raise)
| Lprim (Pctconst c, [arg], _loc) ->
let module Backend = (val t.backend) in
let const =
begin match c with
| Big_endian -> lambda_const_bool Backend.big_endian
| Word_size -> lambda_const_int (8*Backend.size_int)
| Int_size -> lambda_const_int (8*Backend.size_int - 1)
| Max_wosize ->
lambda_const_int ((1 lsl ((8*Backend.size_int) - 10)) - 1)
| Ostype_unix -> lambda_const_bool (String.equal Sys.os_type "Unix")
| Ostype_win32 -> lambda_const_bool (String.equal Sys.os_type "Win32")
| Ostype_cygwin -> lambda_const_bool (String.equal Sys.os_type "Cygwin")
| Backend_type ->
Lambda.const_int 0 (* tag 0 is the same as Native *)
end
in
close t env
(Lambda.Llet(Strict, Lambda.layout_unit, Ident.create_local "dummy",
arg, Lconst const))
| Lprim (Pfield _, [Lprim (Pgetglobal cu, [],_)], _)
when Compilation_unit.equal cu t.current_unit ->
Misc.fatal_errorf "[Pfield (Pgetglobal ...)] for the current compilation \
unit is forbidden upon entry to the middle end"
| Lprim (Psetfield (_, _, _), [Lprim (Pgetglobal _, [], _); _], _) ->
Misc.fatal_errorf "[Psetfield (Pgetglobal ...)] is \
forbidden upon entry to the middle end"
| Lprim (Pgetpredef id, [], _) ->
assert (Ident.is_predef id);
let symbol = Symbol.for_predef_ident id in
t.imported_symbols <- Symbol.Set.add symbol t.imported_symbols;
name_expr (Symbol symbol) ~name:Names.predef_exn
| Lprim (Pgetglobal cu, [], _) ->
assert (not (Compilation_unit.equal cu t.current_unit));
let symbol = Symbol.for_compilation_unit cu in
t.imported_symbols <- Symbol.Set.add symbol t.imported_symbols;
name_expr (Symbol symbol) ~name:Names.pgetglobal
| Lprim (lambda_p, args, loc) ->
(* One of the important consequences of the ANF-like representation
here is that we obtain names corresponding to the components of
blocks being made (with [Pmakeblock]). This information can be used
by the simplification pass to increase the likelihood of eliminating
the allocation, since some field accesses can be tracked back to known
field values. *)
let dbg = Debuginfo.from_location loc in
let p = Convert_primitives.convert lambda_p in
Lift_code.lifting_helper (close_list t env args)
~evaluation_order:`Right_to_left
~name:(Names.of_primitive_arg lambda_p)
~create_body:(fun args ->
name_expr (Prim (p, args, dbg))
~name:(Names.of_primitive lambda_p))
| Lswitch (arg, sw, _loc, kind) ->
let scrutinee = Variable.create Names.switch in
let aux (i, lam) = i, close t env lam in
let nums sw_num cases default =
let module I = Numbers.Int in
match default with
| Some _ ->
I.zero_to_n (sw_num - 1)
| None ->
List.fold_left (fun set (i, _) -> I.Set.add i set) I.Set.empty cases
in
Flambda.create_let scrutinee (Expr (close t env arg))
(Switch (scrutinee,
{ numconsts = nums sw.sw_numconsts sw.sw_consts sw.sw_failaction;
consts = List.map aux sw.sw_consts;
numblocks = nums sw.sw_numblocks sw.sw_blocks sw.sw_failaction;
blocks = List.map aux sw.sw_blocks;
failaction = Option.map (close t env) sw.sw_failaction;
kind;
}))
| Lstringswitch (arg, sw, def, _, kind) ->
let scrutinee = Variable.create Names.string_switch in
Flambda.create_let scrutinee (Expr (close t env arg))
(String_switch (scrutinee,
List.map (fun (s, e) -> s, close t env e) sw,
Option.map (close t env) def, kind))
| Lstaticraise (i, args) ->
Lift_code.lifting_helper (close_list t env args)
~evaluation_order:`Right_to_left
~name:Names.staticraise_arg
~create_body:(fun args ->
let static_exn = Env.find_static_exception env i in
Static_raise (static_exn, args))
| Lstaticcatch (body, (i, ids), handler, kind) ->
let st_exn = Static_exception.create () in
let env = Env.add_static_exception env i st_exn in
let vars =
List.map (fun (ident, kind) ->
(Variable.create_with_same_name_as_ident ident, kind)) ids
in
Static_catch (st_exn, List.map fst vars, close t env body,
close t (Env.add_vars env (List.map fst ids) vars) handler, kind)
| Ltrywith (body, id, handler, kind) ->
let var = Variable.create_with_same_name_as_ident id in
Try_with (close t env body, var,
close t (Env.add_var env id var Lambda.layout_block) handler,
kind)
| Lifthenelse (cond, ifso, ifnot, kind) ->
let cond = close t env cond in
let cond_var = Variable.create Names.cond in
Flambda.create_let cond_var (Expr cond)
(If_then_else (cond_var, close t env ifso, close t env ifnot, kind))
| Lsequence (lam1, lam2) ->
let var = Variable.create Names.sequence in
let lam1 = Flambda.Expr (close t env lam1) in
let lam2 = close t env lam2 in
Flambda.create_let var lam1 lam2
| Lwhile {wh_cond; wh_body} ->
While (close t env wh_cond, close t env wh_body)
| Lfor {for_id; for_from; for_to; for_dir; for_body} ->
let bound_var = Variable.create_with_same_name_as_ident for_id in
let from_value = Variable.create Names.for_from in
let to_value = Variable.create Names.for_to in
let body = close t (Env.add_var env for_id bound_var Lambda.layout_int) for_body in
Flambda.create_let from_value (Expr (close t env for_from))
(Flambda.create_let to_value (Expr (close t env for_to))
(For { bound_var; from_value; to_value; direction=for_dir; body; }))
| Lassign (id, new_value) ->
let being_assigned, _kind =
match Env.find_mutable_var_exn env id with
| being_assigned -> being_assigned
| exception Not_found ->
Misc.fatal_errorf "Closure_conversion.close: unbound mutable \
variable %s in assignment"
(Ident.unique_name id)
in
let new_value_var = Variable.create Names.new_value in
Flambda.create_let new_value_var (Expr (close t env new_value))
(Assign { being_assigned; new_value = new_value_var; })
| Levent (lam, _) -> close t env lam
| Lifused _ ->
(* [Lifused] is used to mark that this expression should be alive only if
an identifier is. Every use should have been removed by
[Simplif.simplify_lets], either by replacing by the inner expression,
or by completely removing it (replacing by unit). *)
Misc.fatal_error "[Lifused] should have been removed by \
[Simplif.simplify_lets]"
| Lregion (body, _) ->
Region (close t env body)
(** Perform closure conversion on a set of function declarations, returning a
set of closures. (The set will often only contain a single function;
the only case where it cannot is for "let rec".) *)
and close_functions t external_env function_declarations : Flambda.named =
let closure_env_without_parameters =
Function_decls.closure_env_without_parameters
external_env function_declarations
in
let all_free_idents = Function_decls.all_free_idents function_declarations in
let close_one_function map decl =
let body = Function_decl.body decl in
let region = Function_decl.region decl in
let params = Function_decl.params decl in
(* Create fresh variables for the elements of the closure (cf.
the comment on [Function_decl.closure_env_without_parameters], above).
This induces a renaming on [Function_decl.free_idents]; the results of
that renaming are stored in [free_variables]. *)
let closure_env =
List.fold_right (fun (id, kind) env ->
Env.add_var env id (Variable.create_with_same_name_as_ident id) kind)
params closure_env_without_parameters
in
(* If the function is the wrapper for a function with an optional
argument with a default value, make sure it always gets inlined.
CR-someday pchambart: eta-expansion wrapper for a primitive are
not marked as stub but certainly should *)
let stub = Function_decl.stub decl in
let param_vars = List.map (fun (id, _) -> Env.find_var closure_env id) params in
let nheap =
match Function_decl.mode decl, Function_decl.kind decl with
| _, Curried {nlocal} -> List.length params - nlocal
| Alloc_heap, Tupled -> List.length params
| Alloc_local, Tupled ->
Misc.fatal_error "Closure_conversion: Tupled Alloc_local function found"
in
let params = List.mapi (fun i (v, kind) ->
let alloc_mode =
if i < nheap then Lambda.alloc_heap else Lambda.alloc_local
in
Parameter.wrap v alloc_mode kind) param_vars
in
let closure_bound_var = Function_decl.closure_bound_var decl in
let unboxed_version = Variable.rename closure_bound_var in
let body = close t closure_env body in
let closure_origin =
Closure_origin.create (Closure_id.wrap unboxed_version)
in
let fun_decl =
Flambda.create_function_declaration
~params ~alloc_mode:(Function_decl.mode decl) ~region
~body ~stub
~inline:(Function_decl.inline decl)
~specialise:(Function_decl.specialise decl)
~check:(Function_decl.check decl)
~is_a_functor:(Function_decl.is_a_functor decl)
~closure_origin
~poll:(Function_decl.poll_attribute decl)
in
match Function_decl.kind decl with
| Curried _ ->
Variable.Map.add closure_bound_var fun_decl map
| Tupled ->
let unboxed_version = Variable.rename closure_bound_var in
let generic_function_stub =
tupled_function_call_stub (List.map fst param_vars) unboxed_version
~closure_bound_var ~region
in
Variable.Map.add unboxed_version fun_decl
(Variable.Map.add closure_bound_var generic_function_stub map)
in
let function_decls =
let is_classic_mode = !Clflags.classic_inlining in
let funs =
List.fold_left close_one_function Variable.Map.empty
(Function_decls.to_list function_declarations)
in
Flambda.create_function_declarations ~is_classic_mode ~funs
in
(* The closed representation of a set of functions is a "set of closures".
(For avoidance of doubt, the runtime representation of the *whole set* is
a single block with tag [Closure_tag].) *)
let set_of_closures =
let free_vars =
Ident.Set.fold (fun var map ->
let internal_var, _ =
Env.find_var closure_env_without_parameters var
in
let var, kind = Env.find_var external_env var in
let external_var : Flambda.specialised_to =
{ var ; projection = None; kind }
in
Variable.Map.add internal_var external_var map)
all_free_idents Variable.Map.empty
in
Flambda.create_set_of_closures ~function_decls ~free_vars
~specialised_args:Variable.Map.empty
~direct_call_surrogates:Variable.Map.empty
in
Set_of_closures set_of_closures
and close_list t sb l = List.map (close t sb) l
and close_let_bound_expression t ?let_rec_ident let_bound_var env
(lam : Lambda.lambda) : Flambda.named =
match lam with
| Lfunction { kind; params; body; attr; loc; mode; region } ->
(* Ensure that [let] and [let rec]-bound functions have appropriate
names. *)
let closure_bound_var =
let debug_info = Debuginfo.from_location loc in
Variable.rename ~debug_info let_bound_var
in
let decl =
Function_decl.create ~let_rec_ident ~closure_bound_var ~kind ~mode ~region
~params ~body ~attr ~loc
in
let set_of_closures_var = Variable.rename let_bound_var in
let set_of_closures =
close_functions t env (Function_decls.create [decl])
in
let project_closure : Flambda.project_closure =
{ set_of_closures = set_of_closures_var;
closure_id = Closure_id.wrap closure_bound_var;
}
in
Expr (Flambda.create_let set_of_closures_var set_of_closures
(name_expr_from_var (Project_closure (project_closure))
~var:let_bound_var))
| lam -> Expr (close t env lam)
let lambda_to_flambda ~backend ~compilation_unit ~size ~filename lam
: Flambda.program =
let lam = add_default_argument_wrappers lam in
let current_unit = Compilation_unit.get_current_exn () in
let t =
{ current_unit;
filename;
backend;
imported_symbols = Symbol.Set.empty;
declared_symbols = [];
}
in
let module_symbol = Symbol.for_compilation_unit compilation_unit in
let block_symbol =
let var = Variable.create Internal_variable_names.module_as_block in
Symbol_utils.Flambda.for_variable var
in
(* The global module block is built by accessing the fields of all the
introduced symbols. *)
(* CR-soon mshinwell for mshinwell: Add a comment describing how modules are
compiled. *)
let fields =
Array.init size (fun pos ->
let sym_v = Variable.create Names.block_symbol in
let result_v = Variable.create Names.block_symbol_get in
let value_v = Variable.create Names.block_symbol_get_field in
Flambda.create_let
sym_v (Symbol block_symbol)
(Flambda.create_let result_v
(Prim (Pfield 0, [sym_v], Debuginfo.none))
(Flambda.create_let value_v
(Prim (Pfield pos, [result_v], Debuginfo.none))
(Var value_v))))
in
let module_initializer : Flambda.program_body =
Initialize_symbol (
block_symbol,
Tag.create_exn 0,
[close t Env.empty lam],
Initialize_symbol (
module_symbol,
Tag.create_exn 0,
Array.to_list fields,
End module_symbol))
in
let program_body =
List.fold_left
(fun program_body (symbol, constant) : Flambda.program_body ->
Let_symbol (symbol, constant, program_body))
module_initializer
t.declared_symbols
in
{ imported_symbols = t.imported_symbols;
program_body;
}