Skip to content

mscsep/TRACE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TRACE: Meta-analysis of learning and memory in PTSD

Step 1: Prepare data

Merge datasets

Recode data

  • script: Recode variables and add method codes with prepare_recode.rmd.
  • input:TRACEmerged.RDS, TRACE_method_codes.xlsx
  • output: TRACErecoded.RDS

Process QA data

  • script: process QA data with prepare_QA.rmd
  • input: TRACE_RoBQA_data.xlsx
  • output: TRACE_QA_animal.RData, TRACE_QA_human.RData, and RoB.jpeg (optional: RoB_clinical.jpeg, RoB_preclinical.jpeg)

count data in meta-analyes: readRDS("processed_data/clinical.data.metaregression.RDS") %>%

  • distinct(PMID) ->clinical.meta.papers

nrow(clinical.meta.papers) [1] 92 readRDS("processed_data/preclinical.data.metaregression.RDS") %>%

  • distinct(PMID)->preclinical.meta.papers

nrow(preclinical.meta.papers) [1] 182

Calculate effect sizes

  • script: prepare data for analysis in prepare_effect_size_QA.rmd
  • input: TRACErecoded.RDS, TRACE_QA_animal.RData, and TRACE_QA_human.RData
  • output: TRACEprepared.RData (nb n=1647)

Step 2: Meta-regression Valence x Phase

  • script: meta-regression Valence x Phase: meta_regression.rmd. This script uses meta_regression_influentials.r to calculate potential influential case and outliers
  • input: TRACEprepared.RData
  • output: datasets used in analyses: clinical.data.metaregression.RDS, preclinical.data.metaregression.RDS and results (main, diagnostics, sensitivity, graphs) -- clinical: phase_valence_PTSD_clinical.csv, phase_valence_PTSD_clinical.tiff, funnel.colours.clinical.tiff, phase_valence_PTSD_clinical.FSN.csv, influentials.clinical.rds, sens.clinical.infout.csv, sens.mod.A.csv, sens.mod.B.csv, sens.mod.C.csv -- preclinical: phase_valence_PTSD_preclinical.csv, phase_valence_PTSD_preclinical.tiff, funnel.colours.preclinical.tiff, phase_valence_PTSD_preclinical.FSN.csv, influentials.preclinical.rds, sens.preclinical.infout.csv, sens.mod.E.csv, sens.mod.D.csv, sens.mod.F.csv -- figure: PTSD.clinical.preclinical.tiff

-> 8.3.22 checked tot hier (en code gerund.) -> bekijkn of resultaten overeen komen met paper (in tabellen).. indien ja dan 'comments' uit script halen.

Step 3: MetaForest and MetaCART

  • script: meta_forest_meta_cart.rmd
  • input: TRACEprepared.RData
  • output: data.explore.rds (NB: this data is also used for descriptives table;

file='processed_data/clinical.data.explorative.RDS'); file='processed_data/preclinical.data.explorative.RDS') "processed_data/REtree.P.rds") lts/metaCART.preclinical.tiff" /fitted.clinicalMetaForest.RDS")

="results/metaforest_Clinical_convergence.tiff", results/metaforest_Clinical_varImportance.tiff", /important_variables_clinical_metaforest.csv") "results/metaforest_PD_clinical.tiff", e="results/metaforest_PD_clinical_metaCARTfollowup.tiff",

file="processed_data/fitted.preclinicalMetaForest.RDS") ="results/metaforest_Preclinical_convergence.tiff", h e="results/metaforest_Preclinical_varImportance.tiff", ),],"results/important_variables_preclinical_metaforest.csv") ="results/metaforest_PD_preclinical.tiff", ="results/metaforest_PD_preclinical_metaCARTfollowup.tiff", ("results/VarImp.clinical.preclinical.tiff",

Step 4: Study descriptives