- script: Merge data S1, S2, S3 to one file with
prepare_merge.rmd
. - input: search 1 TRACE data_collection_search1.xlsx, search 2 TRACE data_collection_search2.xlsx, search 3 TRACE_data_collection_search3.xlsx
- output:
TRACEmerged.RDS
- script: Recode variables and add method codes with
prepare_recode.rmd
. - input:
TRACEmerged.RDS
, TRACE_method_codes.xlsx - output:
TRACErecoded.RDS
- script: process QA data with
prepare_QA.rmd
- input: TRACE_RoBQA_data.xlsx
- output:
TRACE_QA_animal.RData
,TRACE_QA_human.RData
, andRoB.jpeg
(optional:RoB_clinical.jpeg
,RoB_preclinical.jpeg
)
count data in meta-analyes: readRDS("processed_data/clinical.data.metaregression.RDS") %>%
- distinct(PMID) ->clinical.meta.papers
nrow(clinical.meta.papers) [1] 92 readRDS("processed_data/preclinical.data.metaregression.RDS") %>%
- distinct(PMID)->preclinical.meta.papers
nrow(preclinical.meta.papers) [1] 182
- script: prepare data for analysis in
prepare_effect_size_QA.rmd
- input:
TRACErecoded.RDS
,TRACE_QA_animal.RData
, andTRACE_QA_human.RData
- output:
TRACEprepared.RData
(nb n=1647)
- script: meta-regression Valence x Phase:
meta_regression.rmd
. This script usesmeta_regression_influentials.r
to calculate potential influential case and outliers - input:
TRACEprepared.RData
- output: datasets used in analyses:
clinical.data.metaregression.RDS
,preclinical.data.metaregression.RDS
and results (main, diagnostics, sensitivity, graphs) -- clinical:phase_valence_PTSD_clinical.csv
,phase_valence_PTSD_clinical.tiff
,funnel.colours.clinical.tiff
,phase_valence_PTSD_clinical.FSN.csv
,influentials.clinical.rds
,sens.clinical.infout.csv
,sens.mod.A.csv
,sens.mod.B.csv
,sens.mod.C.csv
-- preclinical:phase_valence_PTSD_preclinical.csv
,phase_valence_PTSD_preclinical.tiff
,funnel.colours.preclinical.tiff
,phase_valence_PTSD_preclinical.FSN.csv
,influentials.preclinical.rds
,sens.preclinical.infout.csv
,sens.mod.E.csv
,sens.mod.D.csv
,sens.mod.F.csv
-- figure:PTSD.clinical.preclinical.tiff
-> 8.3.22 checked tot hier (en code gerund.) -> bekijkn of resultaten overeen komen met paper (in tabellen).. indien ja dan 'comments' uit script halen.
- script:
meta_forest_meta_cart.rmd
- input:
TRACEprepared.RData
- output:
data.explore.rds
(NB: this data is also used for descriptives table;
file='processed_data/clinical.data.explorative.RDS'); file='processed_data/preclinical.data.explorative.RDS') "processed_data/REtree.P.rds") lts/metaCART.preclinical.tiff" /fitted.clinicalMetaForest.RDS")
="results/metaforest_Clinical_convergence.tiff", results/metaforest_Clinical_varImportance.tiff", /important_variables_clinical_metaforest.csv") "results/metaforest_PD_clinical.tiff", e="results/metaforest_PD_clinical_metaCARTfollowup.tiff",
file="processed_data/fitted.preclinicalMetaForest.RDS") ="results/metaforest_Preclinical_convergence.tiff", h e="results/metaforest_Preclinical_varImportance.tiff", ),],"results/important_variables_preclinical_metaforest.csv") ="results/metaforest_PD_preclinical.tiff", ="results/metaforest_PD_preclinical_metaCARTfollowup.tiff", ("results/VarImp.clinical.preclinical.tiff",
-
Overview numbers for screening steps (for flowchart) via
Flowchart.rmd
- input: PMID hits & screening search 1, 2 and 3: Review PTSD Cognition AbstractScreening_Overeenstemming EG & MS v15.11.2016.xlsx, pubmed_result_search2_human 6.1.20.txt, pubmed_result_search2_animal 6.1.20.txt, pmid.human.s3.learn.22.5.20.txt, pmid.animal.s3.learn.22.5.20.txt, Checked_TRACE_screening_search3_MS_EG.xlsx
- some additional code for screening in search 2
- step 1: identify inconsistencies in search 2. input (initial screening data): TRACE_screening_search2_SH.xlsx & TRACE_screening_search2_MS.xlsx; output (abstract screening inconsistencies): inconsistencies_human_s2.csv & inconsistencies_animal_s2.csv
- step 2: identify required full text checks in search 2. input (files with abstract screening feedback): inconsistencies_animal_s2_SH.csv & inconsistencies_human_s2_SH.csv"; output (uploaded to OSF): required_full_checks_human_s2.csv & required_full_checks_animal_s2.csv
- step 3: get results full text check search 2. input (files with full text screening feedback): required_full_checks_animal_s2_MS.csv" & required_full_checks_human_s2_SH.csv"; output (uploaded to OSF): animal_inclusions_s2.csv & human_inclusions_s2.csv
- input: Data extraction information: TRACE data_collection_search1.xlsx, TRACE data_collection_search2.xlsx, TRACE_data_collection_search3.xlsx
- Analyses datasets (NB output analyses scripts):
TRACEprepared.RData
,clinical.data.metaregression.RDS
,clinical.data.explorative.RDS"
,preclinical.data.metaregression.RDS
,preclinical.data.explorative.RDS
- output:
processed_data/unique_screened_articles.csv
. enflowchart.tiff
- optional output (used to select papers for QA):
Human.PMIDs.QA.S2.csv
,Animal.PMIDs.QA.S2.csv
. enHuman.PMIDs.QA.S3.csv
enAnimal.PMIDs.QA.S3.csv
-
Characteristics of the included studies via
Descriptives.rmd
(usesdata.explore.rds
, created inDataDrivenAnalysis.rmd
script) [input data<-readRDS("processed_data/data.explore.rds")]