@@ -17,18 +17,22 @@ library(osfr) # to download method codes
17
17
``` {r}
18
18
readRDS("processed_data/TRACEmerged.RDS")->merged.data
19
19
20
- # data<-readRDS("processed_data/TRACErecoded.RDS") # contains only included, recoded, data
20
+ nrow(merged.data)
21
+ # data<-readRDS("processed_data/TRACErecoded.RDS") # contains only included, recoded, data
21
22
#data <- read.csv("processed_data/TRACEmerged.csv", sep = ";", dec = c(",", ".")) # Data
22
23
23
- osf_retrieve_file("a6dmj ") %>% osf_download(path = "data", conflicts="overwrite") # search 3
24
+ osf_retrieve_file("25et8 ") %>% osf_download(path = "data", conflicts="overwrite") # search 3
24
25
method <- read_excel("data/TRACE_method_codes.xlsx", sheet = "codes")
25
26
# method <- read.csv("TRACE_method_codes.csv", sep = ";", na.strings = c(" ", "-"), dec = c(",", ".")) # Method codes
26
27
27
- method %>% select(!notes) %>% filter(is.na(.)) # check, should be no missing.
28
+ # method %>% select(!notes) %>% filter_all(any_vars( is.na(.))) %>% View() ## 11/2/23 wel msisings voor delay vars?
29
+ # check, should be no missing.
30
+
28
31
# Select relevant colums dataset
29
32
method %>% select(task, measure, type, phase, valence, recode, recode.for.ext, cuectx) -> method
30
33
# Create reference var as character
31
34
merged.data1<-merged.data %>% mutate(reference = as.character(paste(author, year, sep=" "))) %>% select(-c(author, year)) # Merge year & author & dropvars.
35
+ nrow(merged.data1)
32
36
```
33
37
34
38
@@ -39,7 +43,7 @@ merged.data1 %>% filter(decision == 1) %>% select(-decision) %>% droplevels() ->
39
43
```
40
44
41
45
42
- ## Add method codes to data
46
+ ## Add method codes to data and confirm merge was correct
43
47
NB the combination of task and measure indicates which method is used to measure behavior. Those values are combined into a new variable ..
44
48
``` {r}
45
49
merged.inclusions %>% mutate(measureID = as.factor(paste(task, measure, sep="."))) -> merged.inclusions.A
@@ -60,7 +64,7 @@ left_join(merged.inclusions.A ,method1, by="measureID", suffix = c(".d", ".m"))-
60
64
61
65
# Recoding Subject variables
62
66
63
- ## Age: set age groups
67
+ ## recode Age: set age groups
64
68
65
69
subject:
66
70
(0=humanmixed(Civiel&Military); 1=ActiveDutyMilitary; 2=Veteran; 12=ActiveDutyMilitary & Veteran; 3=Civilian; 4=Rat; 5=Mice)
@@ -123,35 +127,27 @@ merged.inclusions.B %>% mutate(
123
127
)-> merged.inclusions.recoded
124
128
```
125
129
126
-
127
- no missing values after recoding age in included papers
128
- ``` {r eval=FALSE, include=FALSE}
129
- merged.inclusions.recoded %>% select(subject, age.PTSD, age.PTSD2, age.PTSD.cat,
130
- age.HC, age.HC2, age.HC.cat) %>% filter(is.na(.))
131
- ```
132
-
133
-
130
+ Confirm correct recoding of 'old adult'
134
131
``` {r eval=FALSE, include=FALSE}
135
- merged.inclusions.recoded %>% filter(age.PTSD2 > 65)%>% View()
136
- merged.inclusions.recoded %>% filter(age.HC2 > 65) %>% View()
132
+ merged.inclusions.recoded %>% filter(age.PTSD2 > 65) %>% View()
133
+ merged.inclusions.recoded %>% filter(age.HC2 > 65) %>% View()
137
134
```
138
135
136
+ Remove redundant 'age' variables
139
137
``` {r}
140
138
merged.inclusions.recoded %>% select(!c(age.PTSD, age.PTSD2, age.HC, age.HC2))-> merged.inclusions.recoded2
141
139
```
142
140
143
141
144
- ## Day/Night rhytem
145
-
142
+ ## recode Day/Night rhytem
146
143
``` {r}
147
144
merged.inclusions.recoded2 %>% mutate(rhythm = ifelse(subject %in% c("0", "1", "2", "12", "3"),"active", rhythm)) -> merged.inclusions.recoded3
148
145
merged.inclusions.recoded3$rhythm <- recode(merged.inclusions.recoded3$rhythm, 'dark' = 'active', 'light' = 'inactive')
149
- # for checking
150
- merged.inclusions.recoded3 %>% filter(is.na(rhythm)) # good
146
+ merged.inclusions.recoded3 %>% filter(is.na(rhythm)) # to confirm no NA values
151
147
```
152
148
153
149
154
- ## Time since trauma
150
+ ## recode Time since trauma
155
151
``` {r}
156
152
merged.inclusions.recoded3 %>%
157
153
mutate(
@@ -224,43 +220,37 @@ time.pseudo = case_when(
224
220
merged.inclusions.recoded5 %>% select(-c(time.year, time.month, time.day, time.year2, time.month2, time.day2, time.year3, time.month3, time.day3, time.year4, time.month4, time.day4, time.recoded)) -> merged.inclusions.recoded6
225
221
```
226
222
223
+
227
224
## Subject: new Human-Animal variable
228
225
``` {r}
229
226
merged.inclusions.recoded6 %>% mutate(subject.cat = ifelse(subject %in% c("0", "1", "2", "12", "3"), "Human", "Animal")) ->merged.inclusions.recoded7
230
227
```
231
228
232
- ## recode control type
229
+
230
+ ## recode Control type
233
231
``` {r}
234
232
merged.inclusions.recoded7$control.type = recode(merged.inclusions.recoded7$control.type, "Handled" = "UnExp")
235
233
```
236
234
237
235
238
-
239
-
240
- ## Check missing values
236
+ ## Confirm no missing values
241
237
``` {r}
242
238
which(is.na(merged.inclusions.recoded7$subject.cat))
243
239
```
244
240
245
-
246
241
``` {r}
247
242
which(is.na(merged.inclusions.recoded7$PMID))
248
243
```
249
244
250
-
251
245
``` {r}
252
246
which(is.na(merged.inclusions.recoded7$comparison))
253
247
```
254
248
255
249
256
250
## recode measure, PTSD type and population
257
251
``` {r}
258
-
259
252
# df4$subject.cat
260
-
261
253
# df4.1 %>% select(subject.cat, measure.d, measure2, ptsd.type, ptsd.type2, population, population2) %>% View()
262
-
263
-
264
254
merged.inclusions.recoded7 %>% mutate(
265
255
measure2 = case_when(
266
256
# measure
@@ -306,20 +296,16 @@ merged.inclusions.recoded7 %>% mutate(
306
296
```
307
297
308
298
309
-
310
-
311
- ## set variable types
299
+ ## Set variable types
312
300
313
- all are current character
301
+ NB all are current character
314
302
``` {r variable types}
315
303
names(merged.inclusions.recoded7A)
316
304
317
305
string_names <- c("author", "year",
318
306
"PMID",
319
307
"shocks.num", "shocks.amp",
320
-
321
308
"idPTSD", "idHC",
322
-
323
309
"outcomePTSD", "outcomeHC",
324
310
"ptsd.measure",
325
311
"task", "measure"
@@ -330,10 +316,8 @@ factor_names <-c( #"decision",
330
316
"sex.PTSD", "sex.HC",
331
317
"ptsd.type", 'control.type', 'population',
332
318
"rhythm",
333
-
334
319
"comparison",
335
320
"res.sus.split", "age.PTSD.cat", "age.HC.cat",
336
-
337
321
# and recoded factors
338
322
"ptsd.type2", "population2","task.d", "measure.d", "measure2", "type", "phase", "valence", "cuectx"
339
323
)
@@ -343,13 +327,10 @@ numeric_names <- c("nPTSD", "nHC", "meanPTSD", "sdPTSD", "semPTSD", "meanHC", "s
343
327
# For checking -> ok!
344
328
# merged.data.recoded2 %>% mutate_at(.vars=numeric_names, as.numeric) %>% filter(decision == 1) %>% select(numeric_names) %>% is.na() %>% View()
345
329
346
-
347
-
348
330
merged.inclusions.recoded7A %>%
349
331
mutate_at(.vars=numeric_names, as.numeric) %>%
350
332
mutate_at(.vars=factor_names, factor) ->merged.inclusions.recoded8
351
333
352
-
353
334
# for checking
354
335
# cbind(merged.data.recoded3$nHC,merged.data.recoded4$nHC)
355
336
# unique(merged.inclusions.recoded8$author) %>% data.frame() %>%head()
@@ -395,10 +376,7 @@ merged.inclusions.recoded9$idHC %>% unique()
395
376
```
396
377
397
378
398
-
399
-
400
-
401
- ## new variables for phase & valence (no longer used)
379
+ ## new variables for phase & valence (no longer used) -> can be deleated later
402
380
``` {r eval=FALSE, include=FALSE}
403
381
merged.inclusions.recoded9 %>% mutate(
404
382
@@ -434,7 +412,7 @@ Valence_Grouped = factor(Valence_Grouped)
434
412
435
413
```
436
414
437
-
415
+ ## Save recoded dataset
438
416
``` {r save}
439
417
saveRDS(merged.inclusions.recoded9, "processed_data/TRACErecoded.RDS")
440
418
# write.csv2(merged.inclusions.recoded8, "processed_data/TRACErecoded.csv", fileEncoding = "UTF-8") # writes spec characters weird
0 commit comments