Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Assertion failed: (error == CL_SUCCESS) after SDM installation, at ./test1 #10

Open
Alex-Linhares opened this issue Apr 18, 2018 · 1 comment

Comments

@Alex-Linhares
Copy link
Collaborator

AL$ ./test1
Dimension: 256
Number of hardlocations: 1000000
Allocated memory for addresses: 30.5 MB
Allocated bits per bitstring: 256
Remaining bits per bitstring: 0
Memory efficiency: 100.0%
bs1 = 960856d47a366b8ea73355070440c184efdec8b1c58981e7264a966ed770a674
@@ Linear 1055
@@ Thread 1055
@@ Linear2 1055
@@ Thread2 1055
OpenCL platforms: 1 devices: 1
OpenCL Max compute units=48 Default kernel=single_scan5_unroll Local worksize=4 Global worksize=50304
@@ OpenCL2 1055

Dimension: 1000
Number of hardlocations: 1000000
Allocated memory for addresses: 122.1 MB
Allocated bits per bitstring: 1024
Remaining bits per bitstring: 24
Memory efficiency: 97.7%
bs1 = 6f73b58020731efdc43d1131b1d62afe51e948c2ab1faeb2da1959bcb75d9684adff69a28942eb4ad7b96c1ffcc8b15f6a7b2d491acb48b16b86d1fb278da7a12f0f0a7642216a11caddbacf608461e72baa388a03d12cf5a1788e8fb1935fa12a7ca2ff7992a5e3f6363c0a80426b745afa551aec8d82e6d9525ce1a0000000
@@ Linear 1043
@@ Thread 1043
@@ Linear2 1043
@@ Thread2 1043
OpenCL platforms: 1 devices: 1
OpenCL Max compute units=48 Default kernel=single_scan5_unroll Local worksize=16 Global worksize=50688
@@ OpenCL2 1043

Dimension: 10000
Number of hardlocations: 1000000
Allocated memory for addresses: 1197.8 MB
Allocated bits per bitstring: 10048
Remaining bits per bitstring: 48
Memory efficiency: 99.5%
bs1 = 514ab04b32fdbcab026c43d089d4dc591a5a79b3131b76c8166fcd0e9d1cf48cdfb5e346019c2b390d9c81baaee383e69fe07c69959317912f288e85be64d673556d5bfd4cb83b696bd5e81460aa8bd6117ac7c30abbfbb70a80f15e91bb39fca4b97932ad78dc4f959ad6903709349c45515149814dfd8448b1eab49c12970e19f7f28b783c4542f8083b2c6c4a86bdf95c3c5092940f4272187ccbf77e030a68c39e629e1d39f6a7663b68a9ee24ae9b368c3c0219c0d3071438fc522ab8e89ba3076b71747899c048ddbc47bcb135e5597286267c887a6c4954f727c3a95fd4c35b6500e7f2e8dc4f5edb33f9727ccebfffa205f3b40cbdfb5ea03d6baa66c6eca7d00f9f42d1a4a96e5e8412576c1a8403442779e5e8ff33c828089b19e861a641790dbcdf0d2f2f5f61b209b09df4161d55227c1977e74743c018c08d4ecf2dab1016b18fdd0b76694b4ee0b49e01b9004ec4ea904860b8c81cce1de439d6569c3c45661b24ba1997b3b5345c9522e8508e81a5eed9ffe9133a3275117bd6f6f1d7cce2a6b1c05f21faf1cda8bc479ce891982a9c17cf35a367c63386a32e527ace3447ef16edb8d29a087d704b1271791c2481259ed0e8baac372ead52f35aeabe1b8209276ddf4753be740dbfa3e3dc0da187b02b295160dc903cd296ea2971d1e285dc12aadac66fe9c13620997aa274a52246f1e6aaaa6f1eab408263b7d745cd4211ef10277ddebdcd9cf18b7a9dcfc727617505c760118ddd08fac8721cbb57d2078bdea01751e443cb102c1f23ce813471c6f1c803e3b92c513919aff39067f66ac0375685fa7b14b3fd2c10b6a75e063b6f60f43d99b4b1f48851c71fbcafd82c280e15c504ab7ef77d8e3d70bbbf4e765969a8bf2e0c563f65b67115e14967deee9f79a785b74438631dca9479329efdb88e71b146c7e135c984fe73497c837026fa4a8b89e0e32e3732d9fe230af447c07a864cba0aa7367a94c09876a822c10c55c58178d4ecb5c9c289dcbbe725b038e788608be8f3329595dc89bce94835fc57e123da408f41e03a8ed71bff6e0b6b346ff50b2306ff0b0bfcc8b488934c347e0df4c6b6115294d2652f08b33b219eaa9fb67115c658b7f25750f6812f718e8cb9fd2e59bede796f4485604527390dca21a18345fa8ad2c97ed2393eb4fbd2a3f2db12e1e93048c13d4e8f2fe6324bf0a14a4c5ec0d321c4ea42cebd8c43983a8472b22baa965a77586be2d398ad26f0e787716d82462555d41d74dd5288fa8d25d38d9494e9ee70f2989af0efeec778409b258d5ebd143c9a0383caf59762788ee6cd168cb7b88096257699588a38b16d1259e7fc4118f0623f1fcc0fbb616c0a721082608669c247bb6ab29643146b470cbad37539db837a50c28f852950407ffb15e308bff6dd74b44f97c4dfdfd059a56fb4a5d153ddaa0c8fa206f2bd74b1fff000e05f7f94c767f9260d156988dc9e60717d5375c22b8b96f3e366978ddb1c3e57131fa7c53ec5dd7e619fc1eda55e068747d40b109adb8f1a80d6a0ba8c6fcd3a14d1771d8932489acd0d1499adfa6b49782c448a3ece5e2d93fe47adc0ab600c1b1286229fdad89c6edc641e7ec5a7818b1b718cd5cf23f96fb7b72405023dbc179908f511de8b272be9fe7e0a3c1fef6801d96aabe37c24ffc738821e53f68d6ad2c7784b169caf86f3016da07c2faa159aa36d41accf1eaa8bff9393afe8026fd0dc13f051f9072b492ab99851d7ac5cb6bf45b8000000000000
@@ Linear 984
@@ Thread 984
@@ Linear2 984
@@ Thread2 984
OpenCL platforms: 1 devices: 1
OpenCL Max compute units=48 Default kernel=single_scan5_unroll Local worksize=256 Global worksize=73728
Assertion failed: (error == CL_SUCCESS), function as_scanner_opencl_init, file scanner_opencl.c, line 184.
Abort trap: 6

@msbrogli
Copy link
Owner

As the test has worked for 256 and 1,000 dimensions, the problem probably is that your GPU has not enough memory to run a 10,000 dimension SDM. It happened in my MacBook Pro, for instance.

I'll let this issue opened to improve the error message.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants