-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDESCRIPTION
34 lines (34 loc) · 1.7 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
Package: NeuralEstimators
Title: Likelihood-Free Parameter Estimation using Neural Networks
Version: 0.2.0
Authors@R:
person(given = "Matthew",
family = "Sainsbury-Dale",
role = c("aut", "cre"),
email = "msainsburydale@gmail.com")
Description: An 'R' interface to the 'Julia' package 'NeuralEstimators.jl'. The package facilitates the user-friendly development of neural Bayes estimators, which are neural networks that map data to a point summary of the posterior distribution (Sainsbury-Dale et al., 2024, <doi:10.1080/00031305.2023.2249522>). These estimators are likelihood-free and amortised, in the sense that, once the neural networks are trained on simulated data, inference from observed data can be made in a fraction of the time required by conventional approaches. The package also supports amortised Bayesian or frequentist inference using neural networks that approximate the posterior or likelihood-to-evidence ratio (Zammit-Mangion et al., 2025, Sec. 3.2, 5.2, <doi:10.48550/arXiv.2404.12484>). The package accommodates any model for which simulation is feasible by allowing users to define models implicitly through simulated data.
Maintainer: Matthew Sainsbury-Dale <msainsburydale@gmail.com>
License: GPL (>= 2)
Encoding: UTF-8
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.2
Imports:
JuliaConnectoR,
magrittr
Suggests:
dplyr,
ggplot2,
ggplotify,
ggpubr,
gridExtra,
knitr,
rmarkdown,
markdown,
R.rsp,
testthat (>= 3.0.0)
Config/testthat/edition: 3
SystemRequirements: Julia (>= 1.11)
VignetteBuilder: R.rsp
URL:
https://github.com/msainsburydale/NeuralEstimators,
https://msainsburydale.github.io/NeuralEstimators.jl/dev/