forked from raminmh/CfC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_walker.py
209 lines (181 loc) · 5.28 KB
/
train_walker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import subprocess
from irregular_sampled_datasets import Walker2dImitationData
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow as tf
import numpy as np
import argparse
from tf_cfc import CfcCell, MixedCfcCell, LTCCell
import sys
class BackupCallback(tf.keras.callbacks.Callback):
def __init__(self, model):
super(BackupCallback, self).__init__()
self.saved_weights = None
self.model = model
self.best_loss = np.PINF
def on_epoch_end(self, epoch, logs=None):
if logs["val_loss"] < self.best_loss:
self.best_loss = logs["val_loss"]
# print(f" new best -> {logs['val_loss']:0.3f}")
self.saved_weights = self.model.get_weights()
def restore(self):
if self.best_loss is not None:
self.model.set_weights(self.saved_weights)
def eval(config, index_arg, verbose=0):
data = Walker2dImitationData(seq_len=64)
if config.get("use_ltc"):
cell = LTCCell(units=config["size"])
elif config["use_mixed"]:
cell = MixedCfcCell(units=config["size"], hparams=config)
else:
cell = CfcCell(units=config["size"], hparams=config)
signal_input = tf.keras.Input(shape=(data.seq_len, data.input_size), name="robot")
time_input = tf.keras.Input(shape=(data.seq_len, 1), name="time")
rnn = tf.keras.layers.RNN(cell, time_major=False, return_sequences=True)
output_states = rnn((signal_input, time_input))
y = tf.keras.layers.Dense(data.input_size)(output_states)
model = tf.keras.Model(inputs=[signal_input, time_input], outputs=[y])
base_lr = config["base_lr"]
decay_lr = config["decay_lr"]
train_steps = data.train_x.shape[0] // config["batch_size"]
learning_rate_fn = tf.keras.optimizers.schedules.ExponentialDecay(
base_lr, train_steps, decay_lr
)
opt = (
tf.keras.optimizers.Adam
if config["optimizer"] == "adam"
else tf.keras.optimizers.RMSprop
)
optimizer = opt(learning_rate_fn, clipnorm=config["clipnorm"])
model.compile(
optimizer=optimizer,
loss=tf.keras.losses.MeanSquaredError(),
)
# model.summary()
# Fit model
hist = model.fit(
x=(data.train_x, data.train_times),
y=data.train_y,
batch_size=config["batch_size"],
epochs=config["epochs"],
validation_data=((data.valid_x, data.valid_times), data.valid_y),
callbacks=[BackupCallback(model)],
verbose=0,
)
# Evaluate model after training
test_loss = model.evaluate(
x=(data.test_x, data.test_times), y=data.test_y, verbose=2
)
return test_loss
# 0.64038 +- 0.00574
BEST_DEFAULT = {
"clipnorm": 1,
"optimizer": "adam",
"batch_size": 256,
"size": 64,
"epochs": 50,
"base_lr": 0.02,
"decay_lr": 0.95,
"backbone_activation": "silu",
"backbone_dr": 0.1,
"forget_bias": 1.6,
"backbone_units": 256,
"backbone_layers": 1,
"weight_decay": 1e-06,
"use_mixed": False,
}
# MSE: 0.61654 +- 0.00634
BEST_MIXED = {
"clipnorm": 10,
"optimizer": "adam",
"batch_size": 128,
"size": 128,
"epochs": 50,
"base_lr": 0.005,
"decay_lr": 0.95,
"backbone_activation": "lecun",
"backbone_dr": 0.2,
"forget_bias": 2.1,
"backbone_units": 128,
"backbone_layers": 2,
"weight_decay": 6e-06,
"use_mixed": True,
"no_gate": False,
}
# 0.65040 $\pm$ 0.00814
BEST_NO_GATE = {
"clipnorm": 1,
"optimizer": "adam",
"batch_size": 128,
"size": 256,
"epochs": 50,
"base_lr": 0.008,
"decay_lr": 0.95,
"backbone_activation": "lecun",
"backbone_dr": 0.1,
"forget_bias": 2.8,
"backbone_units": 128,
"backbone_layers": 1,
"weight_decay": 3e-05,
"use_mixed": False,
"no_gate": True,
}
# 0.94844 $\pm$ 0.00988
BEST_MINIMAL = {
"clipnorm": 10,
"optimizer": "adam",
"batch_size": 128,
"size": 256,
"epochs": 50,
"base_lr": 0.006,
"decay_lr": 0.95,
"backbone_activation": "silu",
"backbone_dr": 0.0,
"forget_bias": 5.0,
"backbone_units": 192,
"backbone_layers": 1,
"weight_decay": 1e-06,
"use_mixed": False,
"no_gate": False,
"minimal": True,
}
# 0.66225 $\pm$ 0.01330
BEST_LTC = {
"clipnorm": 10,
"optimizer": "adam",
"batch_size": 128,
"size": 128,
"epochs": 50,
"base_lr": 0.05,
"decay_lr": 0.95,
"backbone_activation": "lecun",
"backbone_dr": 0.0,
"forget_bias": 2.4,
"backbone_units": 128,
"backbone_layers": 1,
"weight_decay": 1e-05,
"use_mixed": False,
"no_gate": False,
"minimal": False,
"use_ltc": True,
}
def score(config):
acc = [eval(config, i) for i in range(5)]
print(f"MSE: {np.mean(acc):0.5f} $\\pm$ {np.std(acc):0.5f}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--use_mixed", action="store_true")
parser.add_argument("--no_gate", action="store_true")
parser.add_argument("--minimal", action="store_true")
parser.add_argument("--use_ltc", action="store_true")
args = parser.parse_args()
if args.minimal:
score(BEST_MINIMAL)
elif args.no_gate:
score(BEST_NO_GATE)
elif args.use_ltc:
score(BEST_LTC)
elif args.use_mixed:
score(BEST_MIXED)
else:
score(BEST_DEFAULT)