falsa makes it easy to generate sample datasets.
Here is how to generate a Parquet file with 100 million rows and 9 columns of data for example:
falsa groupby --path-prefix=~/data --size MEDIUM
Here are the first three rows of data in the file:
┌───────┬──────────┬──────────────┬─────┬─────┬────────┬─────┬─────┬───────────┐
│ id1 ┆ id2 ┆ id3 ┆ id4 ┆ id5 ┆ id6 ┆ v1 ┆ v2 ┆ v3 │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ i64 ┆ i64 ┆ i64 ┆ i64 ┆ i64 ┆ f64 │
╞═══════╪══════════╪══════════════╪═════╪═════╪════════╪═════╪═════╪═══════════╡
│ id038 ┆ id850817 ┆ id0000837021 ┆ 90 ┆ 8 ┆ 898164 ┆ 4 ┆ 15 ┆ 28.133477 │
│ id095 ┆ id73309 ┆ id0000312443 ┆ 3 ┆ 75 ┆ 177193 ┆ 1 ┆ 12 ┆ 91.555302 │
│ id055 ┆ id248099 ┆ id0000141631 ┆ 12 ┆ 94 ┆ 132406 ┆ 1 ┆ 3 ┆ 64.543029 │
└───────┴──────────┴──────────────┴─────┴─────┴────────┴─────┴─────┴───────────┘
With falsa, you can generate many sample datasets.
In virtualenv with python 3.9+:
pip install git+https://github.com/mrpowers-io/falsa.git@main
falsa --help
In virtualenv with python 3.9+:
maturin develop --release
falsa --help
The h2o datasets are used to benchmark query engines on a single machine, see here.
Here are the original R Scripts to generate the sample datasets. These still work if you know how to run R (the large dataset generation can error out if you machine doesn't have sufficient memory).
falsa is good if you want to generate these datasets with a Python interface or if you are facing memory issues with the R scripts.
The h2o groupby dataset has 9 columns and 10 million/100 million/1 billion rows of data.
Here are three representative rows of data:
┌───────┬──────────┬──────────────┬─────┬─────┬────────┬─────┬─────┬───────────┐
│ id1 ┆ id2 ┆ id3 ┆ id4 ┆ id5 ┆ id6 ┆ v1 ┆ v2 ┆ v3 │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ i64 ┆ i64 ┆ i64 ┆ i64 ┆ i64 ┆ f64 │
╞═══════╪══════════╪══════════════╪═════╪═════╪════════╪═════╪═════╪═══════════╡
│ id038 ┆ id850817 ┆ id0000837021 ┆ 90 ┆ 8 ┆ 898164 ┆ 4 ┆ 15 ┆ 28.133477 │
│ id095 ┆ id73309 ┆ id0000312443 ┆ 3 ┆ 75 ┆ 177193 ┆ 1 ┆ 12 ┆ 91.555302 │
│ id055 ┆ id248099 ┆ id0000141631 ┆ 12 ┆ 94 ┆ 132406 ┆ 1 ┆ 3 ┆ 64.543029 │
└───────┴──────────┴──────────────┴─────┴─────┴────────┴─────┴─────┴───────────┘
Here's a short description of the columns:
- id1: 100 distinct values between id001 and id100
- id2: 100 distinct values between id001 and id100
- id3: 1_000_000 distinct values
- id4: random float values between zero and 100
- id5: random integer values between zero and 100
- id6: random integer values between 1 and 1_000_000
- v1: integer values between 1 and 5
- v2: integer valuees between 1 and 15
- v3: floating values between zero and 100
Here's the detailed description of the table:
┌────────────┬───────────┬───────────┬──────────────┬───────────┬───┬───────────────┬──────────┬───────────┬───────────┐
│ statistic ┆ id1 ┆ id2 ┆ id3 ┆ id4 ┆ … ┆ id6 ┆ v1 ┆ v2 ┆ v3 │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ f64 ┆ ┆ f64 ┆ f64 ┆ f64 ┆ f64 │
╞════════════╪═══════════╪═══════════╪══════════════╪═══════════╪═══╪═══════════════╪══════════╪═══════════╪═══════════╡
│ count ┆ 100000000 ┆ 100000000 ┆ 100000000 ┆ 1e8 ┆ … ┆ 1e8 ┆ 1e8 ┆ 1e8 ┆ 1e8 │
│ null_count ┆ 0 ┆ 0 ┆ 0 ┆ 0.0 ┆ … ┆ 0.0 ┆ 0.0 ┆ 0.0 ┆ 0.0 │
│ mean ┆ null ┆ null ┆ null ┆ 50.500471 ┆ … ┆ 499977.133559 ┆ 3.000173 ┆ 8.0002679 ┆ 50.000731 │
│ std ┆ null ┆ null ┆ null ┆ 28.864911 ┆ … ┆ 288668.423121 ┆ 1.414225 ┆ 4.320694 ┆ 28.868118 │
│ min ┆ id001 ┆ id001 ┆ id0000000001 ┆ 1.0 ┆ … ┆ 1.0 ┆ 1.0 ┆ 1.0 ┆ 0.000002 │
│ 25% ┆ null ┆ null ┆ null ┆ 26.0 ┆ … ┆ 249956.0 ┆ 2.0 ┆ 4.0 ┆ 24.999205 │
│ 50% ┆ null ┆ null ┆ null ┆ 51.0 ┆ … ┆ 499949.0 ┆ 3.0 ┆ 8.0 ┆ 50.002307 │
│ 75% ┆ null ┆ null ┆ null ┆ 75.0 ┆ … ┆ 749987.0 ┆ 4.0 ┆ 12.0 ┆ 75.002693 │
│ max ┆ id100 ┆ id999999 ┆ id0001000000 ┆ 100.0 ┆ … ┆ 1e6 ┆ 5.0 ┆ 15.0 ┆ 100.0 │
└────────────┴───────────┴───────────┴──────────────┴───────────┴───┴───────────────┴──────────┴───────────┴───────────┘
The h2o dataset is useful for group by benchmarks. For example, you can use id1 to do an aggregation on a low cardinality column and id3 to do an aggreation on a high cardinality column.