Skip to content

mrpowers-io/falsa

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

falsa

falsa makes it easy to generate sample datasets.

Here is how to generate a Parquet file with 100 million rows and 9 columns of data for example:

falsa groupby --path-prefix=~/data --size MEDIUM

falsa example

Here are the first three rows of data in the file:

┌───────┬──────────┬──────────────┬─────┬─────┬────────┬─────┬─────┬───────────┐
│ id1   ┆ id2      ┆ id3          ┆ id4 ┆ id5 ┆ id6    ┆ v1  ┆ v2  ┆ v3        │
│ ---   ┆ ---      ┆ ---          ┆ --- ┆ --- ┆ ---    ┆ --- ┆ --- ┆ ---       │
│ str   ┆ str      ┆ str          ┆ i64 ┆ i64 ┆ i64    ┆ i64 ┆ i64 ┆ f64       │
╞═══════╪══════════╪══════════════╪═════╪═════╪════════╪═════╪═════╪═══════════╡
│ id038 ┆ id850817 ┆ id0000837021 ┆ 90  ┆ 8   ┆ 898164 ┆ 4   ┆ 15  ┆ 28.133477 │
│ id095 ┆ id73309  ┆ id0000312443 ┆ 3   ┆ 75  ┆ 177193 ┆ 1   ┆ 12  ┆ 91.555302 │
│ id055 ┆ id248099 ┆ id0000141631 ┆ 12  ┆ 94  ┆ 132406 ┆ 1   ┆ 3   ┆ 64.543029 │
└───────┴──────────┴──────────────┴─────┴─────┴────────┴─────┴─────┴───────────┘

With falsa, you can generate many sample datasets.

Installation

Pip install

In virtualenv with python 3.9+:

pip install git+https://github.com/mrpowers-io/falsa.git@main
falsa --help

Maturin build

In virtualenv with python 3.9+:

maturin develop --release
falsa --help

h2o datasets

The h2o datasets are used to benchmark query engines on a single machine, see here.

Here are the original R Scripts to generate the sample datasets. These still work if you know how to run R (the large dataset generation can error out if you machine doesn't have sufficient memory).

falsa is good if you want to generate these datasets with a Python interface or if you are facing memory issues with the R scripts.

h2o groupby dataset

The h2o groupby dataset has 9 columns and 10 million/100 million/1 billion rows of data.

Here are three representative rows of data:

┌───────┬──────────┬──────────────┬─────┬─────┬────────┬─────┬─────┬───────────┐
│ id1   ┆ id2      ┆ id3          ┆ id4 ┆ id5 ┆ id6    ┆ v1  ┆ v2  ┆ v3        │
│ ---   ┆ ---      ┆ ---          ┆ --- ┆ --- ┆ ---    ┆ --- ┆ --- ┆ ---       │
│ str   ┆ str      ┆ str          ┆ i64 ┆ i64 ┆ i64    ┆ i64 ┆ i64 ┆ f64       │
╞═══════╪══════════╪══════════════╪═════╪═════╪════════╪═════╪═════╪═══════════╡
│ id038 ┆ id850817 ┆ id0000837021 ┆ 90  ┆ 8   ┆ 898164 ┆ 4   ┆ 15  ┆ 28.133477 │
│ id095 ┆ id73309  ┆ id0000312443 ┆ 3   ┆ 75  ┆ 177193 ┆ 1   ┆ 12  ┆ 91.555302 │
│ id055 ┆ id248099 ┆ id0000141631 ┆ 12  ┆ 94  ┆ 132406 ┆ 1   ┆ 3   ┆ 64.543029 │
└───────┴──────────┴──────────────┴─────┴─────┴────────┴─────┴─────┴───────────┘

Here's a short description of the columns:

  • id1: 100 distinct values between id001 and id100
  • id2: 100 distinct values between id001 and id100
  • id3: 1_000_000 distinct values
  • id4: random float values between zero and 100
  • id5: random integer values between zero and 100
  • id6: random integer values between 1 and 1_000_000
  • v1: integer values between 1 and 5
  • v2: integer valuees between 1 and 15
  • v3: floating values between zero and 100

Here's the detailed description of the table:

┌────────────┬───────────┬───────────┬──────────────┬───────────┬───┬───────────────┬──────────┬───────────┬───────────┐
│ statistic  ┆ id1       ┆ id2       ┆ id3          ┆ id4       ┆ … ┆ id6           ┆ v1       ┆ v2        ┆ v3        │
│ ---        ┆ ---       ┆ ---       ┆ ---          ┆ ---       ┆   ┆ ---           ┆ ---      ┆ ---       ┆ ---       │
│ str        ┆ str       ┆ str       ┆ str          ┆ f64       ┆   ┆ f64           ┆ f64      ┆ f64       ┆ f64       │
╞════════════╪═══════════╪═══════════╪══════════════╪═══════════╪═══╪═══════════════╪══════════╪═══════════╪═══════════╡
│ count      ┆ 100000000 ┆ 100000000 ┆ 100000000    ┆ 1e8       ┆ … ┆ 1e8           ┆ 1e8      ┆ 1e8       ┆ 1e8       │
│ null_count ┆ 0         ┆ 0         ┆ 0            ┆ 0.0       ┆ … ┆ 0.0           ┆ 0.0      ┆ 0.0       ┆ 0.0       │
│ mean       ┆ null      ┆ null      ┆ null         ┆ 50.500471 ┆ … ┆ 499977.133559 ┆ 3.000173 ┆ 8.0002679 ┆ 50.000731 │
│ std        ┆ null      ┆ null      ┆ null         ┆ 28.864911 ┆ … ┆ 288668.423121 ┆ 1.414225 ┆ 4.320694  ┆ 28.868118 │
│ min        ┆ id001     ┆ id001     ┆ id0000000001 ┆ 1.0       ┆ … ┆ 1.0           ┆ 1.0      ┆ 1.0       ┆ 0.000002  │
│ 25%        ┆ null      ┆ null      ┆ null         ┆ 26.0      ┆ … ┆ 249956.0      ┆ 2.0      ┆ 4.0       ┆ 24.999205 │
│ 50%        ┆ null      ┆ null      ┆ null         ┆ 51.0      ┆ … ┆ 499949.0      ┆ 3.0      ┆ 8.0       ┆ 50.002307 │
│ 75%        ┆ null      ┆ null      ┆ null         ┆ 75.0      ┆ … ┆ 749987.0      ┆ 4.0      ┆ 12.0      ┆ 75.002693 │
│ max        ┆ id100     ┆ id999999  ┆ id0001000000 ┆ 100.0     ┆ … ┆ 1e6           ┆ 5.0      ┆ 15.0      ┆ 100.0     │
└────────────┴───────────┴───────────┴──────────────┴───────────┴───┴───────────────┴──────────┴───────────┴───────────┘

The h2o dataset is useful for group by benchmarks. For example, you can use id1 to do an aggregation on a low cardinality column and id3 to do an aggreation on a high cardinality column.