|
9 | 9 | import numpy as np
|
10 | 10 | from sklearn.base import BaseEstimator, TransformerMixin
|
11 | 11 | from sklearn.metrics import accuracy_score, r2_score
|
12 |
| -from sklearn.externals.joblib import Memory, Parallel, delayed |
| 12 | +from sklearn.externals.joblib import Parallel, delayed |
13 | 13 | from sklearn.linear_model import (
|
14 | 14 | MultiTaskLassoCV, MultiTaskElasticNetCV, LogisticRegression)
|
15 | 15 |
|
16 | 16 |
|
17 | 17 | class MultiTaskEstimator(BaseEstimator, TransformerMixin):
|
18 | 18 | """MultiTask estimator for multiple (continuous / discrete) outputs.
|
| 19 | +
|
| 20 | + Parameters |
| 21 | + ---------- |
| 22 | + estimator : Multitask scikit-learn estimator, can be |
| 23 | + {"MultiTaskLasso", "MultiTaskLassoCV", |
| 24 | + "MultiTaskElasticNet", "MultiTaskElasticNetCV"} |
| 25 | +
|
| 26 | + output_types : shape = (n_outputs,) type of each output, can be |
| 27 | + {"binary", "continuous"} |
19 | 28 | """
|
20 | 29 |
|
21 |
| - def __init__(self, estimator=None, |
22 |
| - memory=Memory(cachedir=None), memory_level=0, |
23 |
| - n_jobs=1, output_types=None): |
| 30 | + def __init__(self, estimator=None, output_types=None): |
24 | 31 | self.estimator = estimator
|
25 |
| - self.memory = memory |
26 |
| - self.memory_level = memory_level |
27 |
| - self.n_jobs = n_jobs |
28 | 32 | # check if output types are okay
|
29 | 33 | for output in output_types:
|
30 | 34 | if output not in ['binary', 'continuous']:
|
|
0 commit comments