本节我们简要介绍如何基于 transformers、peft 等框架,对 DeepSeek-Coder-V2-Lite-Instruct 模型进行 Lora 微调。Lora 是一种高效微调方法,深入了解其原理可参见博客:知乎|深入浅出Lora。
这个教程会在同目录下给大家提供一个 notebook 文件,来让大家更好的学习。
注意:微调 DeepSeek-Coder-V2-Lite-Instruct 模型需要 4×3090 显卡。
本文基础环境如下:
----------------
ubuntu 22.04
python 3.12
cuda 12.1
pytorch 2.3.0
----------------
本文默认学习者已安装好以上 Pytorch(cuda) 环境,如未安装请自行安装。
接下来开始环境配置、模型下载和运行演示 ~
pip
换源加速下载并安装依赖包
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip install modelscope==1.16.1
pip install transformers==4.43.2
pip install accelerate==0.32.1
pip install peft==0.11.1
pip install datasets==2.20.0
考虑到部分同学配置环境可能会遇到一些问题,我们在AutoDL平台准备了DeepSeek-Coder-V2-Lite-Instruct的环境镜像,点击下方链接并直接创建Autodl示例即可。 https://www.codewithgpu.com/i/datawhalechina/self-llm/Deepseek-coder-v2
注意:flash-attn 安装会比较慢,大概需要十几分钟。
在本节教程里,我们将微调数据集放置在根目录 /dataset。
使用 modelscope
中的 snapshot_download
函数下载模型,第一个参数为模型名称,参数 cache_dir
为自定义的模型下载路径,参数revision
为模型仓库分支版本,master
代表主分支,也是一般模型上传的默认分支。
先切换到 autodl-tmp
目录,cd /root/autodl-tmp
然后新建名为 model_download.py
的 python
文件,并在其中输入以下内容并保存
# model_download.py
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
model_dir = snapshot_download('deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct', cache_dir='/root/autodl-tmp', revision='master')
然后在终端中输入 python model_download.py
执行下载,注意该模型权重文件比较大,因此这里需要耐心等待一段时间直到模型下载完成。
注意:记得修改
cache_dir
为你的模型下载路径哦~
LLM 的微调一般指指令微调过程。所谓指令微调,是说我们使用的微调数据形如:
{
"instruction":"回答以下用户问题,仅输出答案。",
"input":"1+1等于几?",
"output":"2"
}
其中,instruction
是用户指令,告知模型其需要完成的任务;input
是用户输入,是完成用户指令所必须的输入内容;output
是模型应该给出的输出。
即我们的核心训练目标是让模型具有理解并遵循用户指令的能力。因此,在指令集构建时,我们应针对我们的目标任务,针对性构建任务指令集。例如,在本节我们使用由笔者合作开源的 Chat-甄嬛 项目作为示例,我们的目标是构建一个能够模拟甄嬛对话风格的个性化 LLM,因此我们构造的指令形如:
{
"instruction": "你是谁?",
"input":"",
"output":"家父是大理寺少卿甄远道。"
}
我们所构造的全部指令数据集在根目录下。
Lora
训练的数据是需要经过格式化、编码之后再输入给模型进行训练的,如果是熟悉 Pytorch
模型训练流程的同学会知道,我们一般需要将输入文本编码为 input_ids
,将输出文本编码为 labels
,编码之后的结果都是多维的向量。我们首先定义一个预处理函数,这个函数用于对每一个样本,编码其输入、输出文本并返回一个编码后的字典:
def process_func(example):
MAX_LENGTH = 384
input_ids, attention_mask, labels = [], [], []
instruction = tokenizer((f"<|begin▁of▁sentence|>假设你是皇帝身边的女人--甄嬛。\n"
f"User: {example['instruction']+example['input']}\nAssistant: "
).strip(),
add_special_tokens=False)
response = tokenizer(f"{example['output']}<|end▁of▁sentence|>", add_special_tokens=False)
input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]
attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1] # 因为eos token咱们也是要关注的所以 补充为1
labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]
if len(input_ids) > MAX_LENGTH: # 做一个截断
input_ids = input_ids[:MAX_LENGTH]
attention_mask = attention_mask[:MAX_LENGTH]
labels = labels[:MAX_LENGTH]
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels
}
DeepSeek-Coder-V2-Lite-Instruct
采用的Prompt Template
格式如下:
<|begin▁of▁sentence|>{system_message}
User: {user_message_1}
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
Assistant:
DeepSeek-Coder-V2-Lite-Instruct模型需要以32位精度形式加载,对于自定义的模型一定要指定trust_remote_code
参数为True
。
model_path = '/root/autodl-tmp/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct'
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True)
tokenizer.padding_side = 'right'
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.float32, device_map="auto")
LoraConfig
这个类中可以设置很多参数,但主要的参数没多少,简单讲一讲,感兴趣的同学可以直接看源码。
task_type
:模型类型target_modules
:需要训练的模型层的名字,主要就是attention
部分的层,不同的模型对应的层的名字不同,可以传入数组,也可以字符串,也可以正则表达式。r
:lora
的秩,具体可以看Lora
原理lora_alpha
:Lora alaph
,具体作用参见Lora
原理
Lora
的缩放是啥嘞?当然不是r
(秩),这个缩放就是lora_alpha/r
, 在这个LoraConfig
中缩放就是4倍。
config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=["q_proj", "kv_a_proj_with_mqa", "kv_b_proj", "o_proj", 'gate_proj', 'up_proj', 'down_proj'], # 现存问题只微调部分演示即可
inference_mode=False, # 训练模式
r=8, # Lora 秩
lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理
lora_dropout=0.1# Dropout 比例
)
TrainingArguments
这个类的源码也介绍了每个参数的具体作用,当然大家可以来自行探索,这里就简单说几个常用的。
output_dir
:模型的输出路径per_device_train_batch_size
:顾名思义batch_size
gradient_accumulation_steps
: 梯度累加,如果你的显存比较小,那可以把batch_size
设置小一点,梯度累加增大一些。logging_steps
:多少步,输出一次log
num_train_epochs
:顾名思义epoch
gradient_checkpointing
:梯度检查,这个一旦开启,模型就必须执行model.enable_input_require_grads()
,这个原理大家可以自行探索,这里就不细说了。
args = TrainingArguments(
output_dir="./output/deepseek_coder_v2",
per_device_train_batch_size=1,
gradient_accumulation_steps=8,
logging_steps=10,
num_train_epochs=2,
save_steps=100,
learning_rate=1e-5,
save_on_each_node=True,
gradient_checkpointing=True,
)
trainer = Trainer(
model=model,
args=args,
train_dataset=tokenized_id,
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
)
trainer.train()
由于模型参数量大,训练模型所需的时长也会随之增长,完成教程代码训练需要10个小时左右。如果只是学习使用,可以看到loss下降即可停止。
训练好了之后可以使用如下方式加载lora
权重进行推理:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from peft import PeftModel
model_path = '/root/autodl-tmp/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct'
lora_path = './output/deepseek_coder_v2'
# 加载tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# 加载模型
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto",torch_dtype=torch.bfloat16, trust_remote_code=True).eval()
# 加载lora权重
model = PeftModel.from_pretrained(model, model_id=lora_path)
messages=[
{'role': 'sysrem', 'content': "假设你是皇帝身边的女人--甄嬛。"},
{ 'role': 'user', 'content': "你好"}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))