-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference.py
159 lines (134 loc) · 5.98 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import requests
import aiohttp
SLOTS = {}
def calculate_number_of_tokens(line):
return len(line) / 2.7
def get_user_name(user):
return user.username or ((user.first_name or "") + " " + (user.last_name or ""))
async def prepare_prompt(messages, active_prompt, model, add_persona=True, chat=None):
chat_log = ""
current_tokens = 0
persona_name = active_prompt['persona_name']
if chat is None:
chat = messages[-1].chat
if chat.type == "private":
base_prompt = model['private_base_prompt'].replace("{{char}}", persona_name)\
.replace("{{username}}", chat.username or "")\
.replace("{{first_name}}", chat.first_name or "")\
.replace("{{last_name}}", chat.last_name or "")\
.replace("{{bio}}", chat.bio or "")
else:
base_prompt = model['group_base_prompt'].replace("{{char}}", persona_name)\
.replace("{{room_title}}", chat.title or "")\
.replace("{{room_description}}", chat.description or "")
prompt_calc = f"{base_prompt}\n{model['log_start']}\n{model['user_prepend']}{persona_name}{model['user_append']}"
initial_prompt_tokens = calculate_number_of_tokens(prompt_calc)
max_tokens = model['max_tokens'] - initial_prompt_tokens
chat_log_lines = []
seen_info = set()
for msg in messages:
name = get_user_name(msg.from_user)
# check if the message is from our telegram bot
# if name == bot.get_me().username:
# name = persona_name
# if name == active_prompt.users[0].username:
# name = user_name
# elif name == active_prompt.users[1].username:
# name = persona_name
if (msg.reply_to_message is not None):
chat_log_lines.append(f"{model['user_prepend']}{name} (in reply to {get_user_name(msg.reply_to_message.from_user)}){model['user_append']}{msg.text}")
else:
chat_log_lines.append(f"{model['user_prepend']}{name}{model['user_append']}{msg.text}")
for line in reversed(chat_log_lines):
line_tokens = calculate_number_of_tokens(line)
# matched_entries = find_matches(line)
# info_tokens = 0
# info_text = ''
# for entry in matched_entries:
# if entry not in seen_info:
# formatted_entry = f"### INFO: {entry}"
# info_tokens += calculate_number_of_tokens(formatted_entry)
# info_text += f"{formatted_entry}\n"
# seen_info.add(entry)
if (current_tokens + line_tokens) <= max_tokens:
chat_log = f"{model['line_separator']}{line}\n{chat_log}"
current_tokens += line_tokens
# if info_text:
# print("adding info text", info_text)
# chat_log = f"{info_text}{chat_log}"
# current_tokens += info_tokens
else:
break
if add_persona:
return f"{base_prompt}\n{model['log_start']}\n{chat_log}{model['line_separator']}{model['user_prepend']}{persona_name} (in reply to {get_user_name(messages[-1].from_user)}){model['user_append']}"
else:
return f"{base_prompt}\n{model['log_start']}\n{chat_log}{model['line_separator']}"
async def complete(prompt, model, stop_sequences, length=None, chat_id="0"):
print(prompt)
params = {
"prompt": prompt,
"temperature": model['temperature'],
"top_p": model['top_p'],
"top_k": model['top_k'],
}
if chat_id in SLOTS:
session, slot_id = SLOTS[chat_id]
else:
session, slot_id = aiohttp.ClientSession(), -1
if model['engine'] == "kobold":
params.update({
"n": 1,
"max_context_length": model['max_tokens'],
"max_length": length is None and model['max_length'] or length,
"rep_pen": 1.08,
"top_a": 0,
"typical": 1,
"tfs": 1,
"rep_pen_range": 1024,
"rep_pen_slope": 0.7,
"sampler_order": model['sampler_order'],
"quiet": True,
"stop_sequence": stop_sequences,
"use_default_badwordsids": False
})
elif model['engine'] == "llamacpp":
print("slot_id", slot_id)
# slot_id = model['slot_id'] is None and -1 or model['slot_id']
params.update({
"n_predict": length is None and model['max_length'] or length,
"slot_id": slot_id,
"id_slot": slot_id,
"cache_prompt": True,
"typical_p": 1,
"tfs_z": 1,
"stop": stop_sequences,
"use_default_badwordsids": False
})
elif model['engine'] == "openai":
params.update({
"n": 1,
"stop": stop_sequences,
"max_tokens": length is None and model['max_length'] or length,
})
async with session.post(model['api_url'], json=params) as response:
if response.status == 200:
# Simulate the response (you will need to replace this with actual API response handling)
response_data = await response.json()
if model['engine'] == "kobold":
print(response_data)
return_data = False, response_data['results'][0]['text']
elif model['engine'] == "llamacpp":
# model['slot_id'] = response_data['slot_id']
if 'slot_id' in response_data:
slot_id = response_data['slot_id']
elif 'id_slot' in response_data:
slot_id = response_data['id_slot']
stopped = response_data['stopped_eos'] or response_data['stopped_word']
return_data = stopped, response_data['content']
elif model['engine'] == "openai":
return_data = False, response_data.choices[0]['text']
SLOTS[chat_id] = session, slot_id
return return_data
else:
print(f"Error: Request failed with status code {response.status}")
return True, None