-
Notifications
You must be signed in to change notification settings - Fork 778
/
GenerateTuples.cpp
314 lines (255 loc) · 9.25 KB
/
GenerateTuples.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
////////////////////////////////////////////////////////////
//
// generate set of target candidates for confusion net
//
////////////////////////////////////////////////////////////
#include <numeric>
#include "moses/Word.h"
#include "moses/Phrase.h"
#include "moses/ConfusionNet.h"
#include "moses/WordsRange.h"
#include "moses/TranslationModel/PhraseDictionaryTree.h"
using namespace Moses;
#if 0
// Generates all tuples from n indexes with ranges 0 to card[j]-1, respectively..
// Input: number of indexes and ranges: ranges[0] ... ranges[num_idx-1]
// Output: number of tuples and monodimensional array of tuples.
// Reference: mixed-radix generation algorithm (D. E. Knuth, TAOCP v. 4.2)
size_t GenerateTuples(unsigned num_idx,unsigned* ranges,unsigned *&tuples)
{
unsigned* single_tuple= new unsigned[num_idx+1];
unsigned num_tuples=1;
for (unsigned k=0; k<num_idx; ++k) {
num_tuples *= ranges[k];
single_tuple[k]=0;
}
tuples=new unsigned[num_idx * num_tuples];
// we need this additional element for the last iteration
single_tuple[num_idx]=0;
unsigned j=0;
for (unsigned n=0; n<num_tuples; ++n) {
memcpy((void *)((tuples + n * num_idx)),(void *)single_tuple,num_idx * sizeof(unsigned));
j=0;
while (single_tuple[j]==ranges[j]-1) {
single_tuple[j]=0;
++j;
}
++single_tuple[j];
}
delete [] single_tuple;
return num_tuples;
}
typedef PhraseDictionaryTree::PrefixPtr PPtr;
typedef std::vector<PPtr> vPPtr;
typedef std::vector<std::vector<Factor const*> > mPhrase;
std::ostream& operator<<(std::ostream& out,const mPhrase& p)
{
for(size_t i=0; i<p.size(); ++i) {
out<<i<<" - ";
for(size_t j=0; j<p[i].size(); ++j)
out<<p[i][j]->ToString()<<" ";
out<<"|";
}
return out;
}
struct State {
vPPtr ptrs;
WordsRange range;
float score;
State() : range(0,0),score(0.0) {}
State(size_t b,size_t e,const vPPtr& v,float sc=0.0) : ptrs(v),range(b,e),score(sc) {}
size_t begin() const {
return range.GetStartPos();
}
size_t end() const {
return range.GetEndPos();
}
float GetScore() const {
return score;
}
};
std::ostream& operator<<(std::ostream& out,const State& s)
{
out<<"["<<s.ptrs.size()<<" ("<<s.begin()<<","<<s.end()<<") "<<s.GetScore()<<"]";
return out;
}
typedef std::map<mPhrase,float> E2Costs;
struct GCData {
const std::vector<PhraseDictionaryTree const*>& pdicts;
const std::vector<std::vector<float> >& weights;
std::vector<FactorType> inF,outF;
size_t distinctOutputFactors;
vPPtr root;
size_t totalTuples,distinctTuples;
GCData(const std::vector<PhraseDictionaryTree const*>& a,
const std::vector<std::vector<float> >& b)
: pdicts(a),weights(b),totalTuples(0),distinctTuples(0) {
CHECK(pdicts.size()==weights.size());
std::set<FactorType> distinctOutFset;
inF.resize(pdicts.size());
outF.resize(pdicts.size());
root.resize(pdicts.size());
for(size_t i=0; i<pdicts.size(); ++i) {
root[i]=pdicts[i]->GetRoot();
inF[i]=pdicts[i]->GetInputFactorType();
outF[i]=pdicts[i]->GetOutputFactorType();
distinctOutFset.insert(pdicts[i]->GetOutputFactorType());
}
distinctOutputFactors=distinctOutFset.size();
}
FactorType OutFT(size_t i) const {
return outF[i];
}
FactorType InFT(size_t i) const {
return inF[i];
}
size_t DistinctOutFactors() const {
return distinctOutputFactors;
}
const vPPtr& GetRoot() const {
return root;
}
};
typedef std::vector<Factor const*> vFactor;
typedef std::vector<std::pair<float,vFactor> > TgtCandList;
typedef std::vector<TgtCandList> OutputFactor2TgtCandList;
typedef std::vector<OutputFactor2TgtCandList*> Len2Cands;
void GeneratePerFactorTgtList(size_t factorType,PPtr pptr,GCData& data,Len2Cands& len2cands)
{
std::vector<FactorTgtCand> cands;
data.pdicts[factorType]->GetTargetCandidates(pptr,cands);
for(std::vector<FactorTgtCand>::const_iterator cand=cands.begin(); cand!=cands.end(); ++cand) {
CHECK(data.weights[factorType].size()==cand->second.size());
float costs=std::inner_product(data.weights[factorType].begin(),
data.weights[factorType].end(),
cand->second.begin(),
0.0);
size_t len=cand->first.size();
if(len>=len2cands.size()) len2cands.resize(len+1,0);
if(!len2cands[len]) len2cands[len]=new OutputFactor2TgtCandList(data.DistinctOutFactors());
OutputFactor2TgtCandList &outf2tcandlist=*len2cands[len];
outf2tcandlist[data.OutFT(factorType)].push_back(std::make_pair(costs,cand->first));
}
}
void GenerateTupleTgtCands(OutputFactor2TgtCandList& tCand,E2Costs& e2costs,GCData& data)
{
// check if candidates are non-empty
bool gotCands=1;
for(size_t j=0; gotCands && j<tCand.size(); ++j)
gotCands &= !tCand[j].empty();
if(gotCands) {
// enumerate tuples
CHECK(data.DistinctOutFactors()==tCand.size());
std::vector<unsigned> radix(data.DistinctOutFactors());
for(size_t i=0; i<tCand.size(); ++i) radix[i]=tCand[i].size();
unsigned *tuples=0;
size_t numTuples=GenerateTuples(radix.size(),&radix[0],tuples);
data.totalTuples+=numTuples;
for(size_t i=0; i<numTuples; ++i) {
mPhrase e(radix.size());
float costs=0.0;
for(size_t j=0; j<radix.size(); ++j) {
CHECK(tuples[radix.size()*i+j]<tCand[j].size());
std::pair<float,vFactor> const& mycand=tCand[j][tuples[radix.size()*i+j]];
e[j]=mycand.second;
costs+=mycand.first;
}
#ifdef DEBUG
bool mismatch=0;
for(size_t j=1; !mismatch && j<e.size(); ++j)
if(e[j].size()!=e[j-1].size()) mismatch=1;
CHECK(mismatch==0);
#endif
std::pair<E2Costs::iterator,bool> p=e2costs.insert(std::make_pair(e,costs));
if(p.second) ++data.distinctTuples;
else {
// entry known, take min of costs, alternative: sum probs
if(costs<p.first->second) p.first->second=costs;
}
}
delete [] tuples;
}
}
void GenerateCandidates_(E2Costs& e2costs,const vPPtr& nextP,GCData& data)
{
Len2Cands len2cands;
// generate candidates for each element of nextP:
for(size_t factorType=0; factorType<nextP.size(); ++factorType)
if(nextP[factorType])
GeneratePerFactorTgtList(factorType,nextP[factorType],data,len2cands);
// for each length: enumerate tuples, compute score, and insert in e2costs
for(size_t len=0; len<len2cands.size(); ++len) if(len2cands[len])
GenerateTupleTgtCands(*len2cands[len],e2costs,data);
}
void GenerateCandidates(const ConfusionNet& src,
const std::vector<PhraseDictionaryTree const*>& pdicts,
const std::vector<std::vector<float> >& weights,
int verbose)
{
GCData data(pdicts,weights);
std::vector<State> stack;
for(size_t i=0; i<src.GetSize(); ++i) stack.push_back(State(i,i,data.GetRoot()));
std::map<WordsRange,E2Costs> cov2E;
// std::cerr<<"start while loop. initial stack size: "<<stack.size()<<"\n";
while(!stack.empty()) {
State curr(stack.back());
stack.pop_back();
//std::cerr<<"processing state "<<curr<<" stack size: "<<stack.size()<<"\n";
CHECK(curr.end()<src.GetSize());
const ConfusionNet::Column &currCol=src[curr.end()];
for(size_t colidx=0; colidx<currCol.size(); ++colidx) {
const Word& w=currCol[colidx].first;
vPPtr nextP(curr.ptrs);
for(size_t j=0; j<nextP.size(); ++j)
nextP[j]=pdicts[j]->Extend(nextP[j],
w.GetFactor(data.InFT(j))->GetString());
bool valid=1;
for(size_t j=0; j<nextP.size(); ++j) if(!nextP[j]) {
valid=0;
break;
}
if(valid) {
if(curr.end()+1<src.GetSize())
stack.push_back(State(curr.begin(),curr.end()+1,nextP,
curr.GetScore()+currCol[colidx].second));
E2Costs &e2costs=cov2E[WordsRange(curr.begin(),curr.end()+1)];
GenerateCandidates_(e2costs,nextP,data);
}
}
// check if there are translations of one-word phrases ...
//if(curr.begin()==curr.end() && tCand.empty()) {}
} // end while(!stack.empty())
if(verbose) {
// print statistics for debugging purposes
std::cerr<<"tuple stats: total: "<<data.totalTuples
<<" distinct: "<<data.distinctTuples<<" ("
<<(data.distinctTuples/(0.01*data.totalTuples))
<<"%)\n";
std::cerr<<"per coverage set:\n";
for(std::map<WordsRange,E2Costs>::const_iterator i=cov2E.begin();
i!=cov2E.end(); ++i) {
std::cerr<<i->first<<" -- distinct cands: "
<<i->second.size()<<"\n";
}
std::cerr<<"\n\n";
}
if(verbose>10) {
std::cerr<<"full list:\n";
for(std::map<WordsRange,E2Costs>::const_iterator i=cov2E.begin();
i!=cov2E.end(); ++i) {
std::cerr<<i->first<<" -- distinct cands: "
<<i->second.size()<<"\n";
for(E2Costs::const_iterator j=i->second.begin(); j!=i->second.end(); ++j)
std::cerr<<j->first<<" -- "<<j->second<<"\n";
}
}
}
#else
void GenerateCandidates(const ConfusionNet&,
const std::vector<PhraseDictionaryTree const*>&,
const std::vector<std::vector<float> >&,
int)
{
std::cerr<<"ERROR: GenerateCandidates is currently broken\n";
}
#endif