Skip to content

Commit 0015487

Browse files
committed
week 14
1 parent 1f2ad08 commit 0015487

File tree

2 files changed

+100
-34
lines changed

2 files changed

+100
-34
lines changed

VSP-0050/main.tex

Lines changed: 85 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@
1212
\section*{Abstract Vector Spaces}
1313
\end{onlineOnly}
1414

15-
In \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/VSP-0020/main}{Subspaces of $\RR^n$} we discussed $\RR^n$ as a vector space and introduced the notion of a subspace of $\RR^n$.
15+
Earlier in the text we discussed $\RR^n$ as a vector space and introduced the notion of a subspace of $\RR^n$.
1616
In this section we will consider sets other than $\RR^n$ that have two operations and satisfy the same properties as $\RR^n$. Such sets, together with the operations of addition and scalar multiplication, will also be called vector spaces.
1717

1818
\subsection*{Properties of Vector Spaces}
@@ -51,9 +51,9 @@ \subsection*{Properties of Vector Spaces}
5151
$1\vec{u}=\vec{u}$
5252
\end{enumerate}
5353

54-
\begin{remark}
55-
All scalars in this chapter are assumed to be real numbers. Complex scalars are considered in \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/RTH-0050/main}{Complex Matrices}.
56-
\end{remark}
54+
% \begin{remark}
55+
% All scalars in this chapter are assumed to be real numbers. Complex scalars are considered in \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/RTH-0050/main}{Complex Matrices}.
56+
% \end{remark}
5757

5858
In the next two examples we will explore two sets other than $\RR^n$ endowed with addition and scalar multiplication and satisfying the same properties.
5959

@@ -378,25 +378,60 @@ \subsection*{Linear Combinations and Span}
378378
\end{proof}
379379

380380
\section*{Practice Problems}
381-
\emph{Problems \ref{prob:abstractvectspace1}-\ref{prob:abstractvectspace4}}
382381

383-
Is the set of all points in $\mathbb{R}^2$ a vector space under the given definitions of addition and scalar multiplication? In each case be specific about which vector space properties hold and which properties fail.
384382

385383
\begin{problem}\label{prob:abstractvectspace1}
384+
Given the set of all points in $\mathbb{R}^2$, define the operations of addition and scalar multiplication as follows:
385+
386386
Addition: $(a, b)+(c, d)=(a+d, b+c)$\\ Scalar Multiplication: $k(a, b)=(ka, kb)$
387+
388+
Is addition, as defined above, commutative?
389+
\begin{multipleChoice}
390+
\choice{Yes}
391+
\choice[correct]{No}
392+
\end{multipleChoice}
387393
\end{problem}
388394

389-
\begin{problem}\label{prob:abstractvectspace2}
395+
\begin{problem}\label{prob:abstractvectspace2} Given the set of all points in $\mathbb{R}^2$, define the operations of addition and scalar multiplication as follows:
396+
390397
Addition: $(a, b)+(c, d)=(0, b+d)$\\ Scalar Multiplication: $k(a, b)=(ka, kb)$
398+
399+
Is addition, as defined above, commutative?
400+
\begin{multipleChoice}
401+
\choice[correct]{Yes}
402+
\choice{No}
403+
\end{multipleChoice}
404+
405+
Is there an additive identity?
406+
\begin{multipleChoice}
407+
\choice{Yes}
408+
\choice[correct]{No}
409+
\end{multipleChoice}
410+
391411
\end{problem}
392412

393413
\begin{problem}\label{prob:abstractvectspace3}
394-
Addition: $(a, b)+(c, d)=(a+c, b+d)$\\ Scalar Multiplication: $k(a, b)=(a, kb)$
395-
\end{problem}
414+
Given the set of all points in $\mathbb{R}^2$, define the operations of addition and scalar multiplication as follows:
415+
416+
Addition: $(a, b)+(c, d)=(a+c, b+d)$\\ Scalar Multiplication: $k(a, b)=(a, kb)$
417+
418+
Is the Distributive Property over Vector Addition satisfied?
419+
\begin{multipleChoice}
420+
\choice[correct]{Yes}
421+
\choice{No}
422+
\end{multipleChoice}
423+
424+
Is the Distributive Property over Scalar Addition satisfied?
425+
\begin{multipleChoice}
426+
\choice{Yes}
427+
\choice[correct]{No}
428+
\end{multipleChoice}
429+
430+
\end{problem}
396431

397-
\begin{problem}\label{prob:abstractvectspace4}
398-
Addition: $(a, b)+(c, d)=(a-c, b-d)$\\ Scalar Multiplication: $k(a, b)=(ka, kb)$
399-
\end{problem}
432+
% \begin{problem}\label{prob:abstractvectspace4}
433+
% Addition: $(a, b)+(c, d)=(a-c, b-d)$\\ Scalar Multiplication: $k(a, b)=(ka, kb)$
434+
% \end{problem}
400435

401436

402437
\begin{problem}\label{prob:abstractvectspace5}
@@ -405,33 +440,49 @@ \section*{Practice Problems}
405440
Verify that $\mathcal{F}$ is a vector space.
406441
\end{problem}
407442

408-
\begin{problem}\label{prob:abstractvectspacediffeq}
409-
A differential equation is an equation that contains derivatives. Consider the differential equation:
410-
\begin{align}\label{diffeq} f''+f=0\end{align}
411-
A solution to such an equation is a function.
412-
\begin{enumerate}
413-
\item Verify that $f(x)=\sin x$ is a solution to (\ref{diffeq}).
414-
\item Is $f(x)=2\sin x$ a solution?
415-
\item Is $f(x)=\cos x$ a solution?
416-
\item Is $f(x)=\sin x+\cos x$ a solution?
417-
\item Let $S$ be the set of all solutions to (\ref{diffeq}). Prove that $S$ is a vector space.
418-
\end{enumerate}
419-
\end{problem}
443+
% \begin{problem}\label{prob:abstractvectspacediffeq}
444+
% A differential equation is an equation that contains derivatives. Consider the differential equation:
445+
% \begin{align}\label{diffeq} f''+f=0\end{align}
446+
% A solution to such an equation is a function.
447+
% \begin{enumerate}
448+
% \item Verify that $f(x)=\sin x$ is a solution to (\ref{diffeq}).
449+
% \item Is $f(x)=2\sin x$ a solution?
450+
% \item Is $f(x)=\cos x$ a solution?
451+
% \item Is $f(x)=\sin x+\cos x$ a solution?
452+
% \item Let $S$ be the set of all solutions to (\ref{diffeq}). Prove that $S$ is a vector space.
453+
% \end{enumerate}
454+
% \end{problem}
420455

421-
\begin{problem}\label{prob:abstractvectspacecomplex}
422-
In this problem we will check that the set $\mathbb{C}$ of all complex numbers is in fact a vector space. Let $z_1 = a_1 + b_1 i$ be a complex number. Similarly, let $z_2 = a_2 + b_2 i$, $z_3 = a_3 + b_3 i$ be complex numbers, and let $k$ and $p$ be real number scalars. Check that complex numbers are closed under addition and multiplication, and that they satisfy each of the vector space properties.
423-
\end{problem}
456+
% \begin{problem}\label{prob:abstractvectspacecomplex}
457+
% In this problem we will check that the set $\mathbb{C}$ of all complex numbers is in fact a vector space. Let $z_1 = a_1 + b_1 i$ be a complex number. Similarly, let $z_2 = a_2 + b_2 i$, $z_3 = a_3 + b_3 i$ be complex numbers, and let $k$ and $p$ be real number scalars. Check that complex numbers are closed under addition and multiplication, and that they satisfy each of the vector space properties.
458+
% \end{problem}
424459

425460
\begin{problem}\label{prob:abstractvectspace6}
426-
Refer to Example \ref{ex:centralizerofA} and describe all elements of $C_I$, where $I$ is a $3\times 3$ identity matrix.
461+
Recall that for a fixed matrix $A$ in $\mathbb{M}_{n,n}$, the set $C_A$ of all $n\times n$ matrices that commute with $A$ under matrix multiplication is a subspace of $\mathbb{M}_{n,n}$. (Example \ref{ex:centralizerofA})
462+
463+
Describe all elements of $C_I$, where $I$ is a $3\times 3$ identity matrix.
427464
\end{problem}
428465

429466
\begin{problem}\label{prob:abstractvectspace7}
430-
Is the subset of all invertible $n\times n$ matrices a subspace of $\mathbb{M}_{n,n}$? Prove your claim.
467+
Is the subset of all invertible $n\times n$ matrices a subspace of $\mathbb{M}_{n,n}$?
468+
469+
\begin{multipleChoice}
470+
\choice{Yes}
471+
\choice[correct]{No}
472+
\end{multipleChoice}
473+
474+
Prove your claim.
431475
\end{problem}
432476

433477
\begin{problem}\label{prob:symmetricsubspace}
434-
Is the subset of all symmetric $n\times n$ matrices a subspace of $\mathbb{M}_{n,n}$? (See Definition \ref{def:symmetricandskewsymmetric}.) Prove your claim.
478+
Is the subset of all symmetric $n\times n$ matrices a subspace of $\mathbb{M}_{n,n}$?
479+
480+
\begin{multipleChoice}
481+
\choice[correct]{Yes}
482+
\choice{No}
483+
\end{multipleChoice}
484+
485+
Prove your claim.
435486
\end{problem}
436487

437488
\begin{problem}\label{prob:abstractvectspace8}
@@ -440,9 +491,9 @@ \section*{Practice Problems}
440491

441492
Is $Z$ a subspace of $\mathbb{M}_{n,n}$?
442493

443-
\begin{hint}
444-
Don't forget to check that $Z$ is not empty!
445-
\end{hint}
494+
% \begin{hint}
495+
% Don't forget to check that $Z$ is not empty!
496+
% \end{hint}
446497
\end{problem}
447498

448499
\begin{problem}\label{prob:abstractvectspace9}
@@ -454,7 +505,7 @@ \section*{Practice Problems}
454505
\end{problem}
455506

456507
\begin{problem}\label{prob:spanisasubspaceabstract}
457-
Prove Theorem \ref{th:spanisasubspaceabstract}.
508+
Let $V$ be a vector space. Let $S$ be any subset of $V$. Prove that $U=\mbox{span}(S)$ is a subspace of $V$. (Theorem \ref{th:spanisasubspaceabstract})
458509
\end{problem}
459510

460511
\section*{Text Source} The discussion on polynomials was adapted from Section 6.1 of Keith Nicholson's \href{https://open.umn.edu/opentextbooks/textbooks/linear-algebra-with-applications}{\it Linear Algebra with Applications}. (CC-BY-NC-SA)

week14.tex

Lines changed: 15 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,15 @@
1+
\documentclass{xourse}
2+
3+
\input{preamble.tex}
4+
5+
\title{Week 14}
6+
7+
\begin{document}
8+
\begin{abstract}
9+
\end{abstract}
10+
\maketitle
11+
12+
%\part{Week 14 assignments}
13+
\activity{VSP-0050/main}
14+
15+
\end{document}

0 commit comments

Comments
 (0)