(Unofficial) Pytorch implementation of JointBERT
: BERT for Joint Intent Classification and Slot Filling
- Predict
intent
andslot
at the same time from one BERT model (=Joint model) - total_loss = intent_loss + coef * slot_loss (Change coef with
--slot_loss_coef
option) - If you want to use CRF layer, give
--use_crf
option
- python>=3.5
- torch==1.1.0
- transformers==2.2.2
- seqeval==0.0.12
- pytorch-crf==0.7.2
Train | Dev | Test | Intent Labels | Slot Labels | |
---|---|---|---|---|---|
ATIS | 4,478 | 500 | 893 | 21 | 120 |
Snips | 13,084 | 700 | 700 | 7 | 72 |
- The number of labels are based on the train dataset.
- Add
UNK
for labels (For intent and slot labels which are only shown in dev and test dataset) - Add
PAD
for slot label
$ python3 main.py --task {task_name} \
--model_type {model_type} \
--model_dir {model_dir_name} \
--do_train --do_eval \
--use_crf
# For ATIS
$ python3 main.py --task atis \
--model_type bert \
--model_dir atis_model \
--do_train --do_eval
# For Snips
$ python3 main.py --task snips \
--model_type bert \
--model_dir snips_model \
--do_train --do_eval
- There should be a trained model before running prediction.
- You should write sentences in
preds.txt
inpreds
directory. - If your model is trained using CRF, you must give
--use_crf
option when running prediction.
$ python3 main.py --task snips \
--model_type bert \
--model_dir snips_model \
--do_pred \
--pred_dir preds \
--pred_input_file preds.txt
- Run 5 ~ 10 epochs (Record the best result)
- Only test with
uncased
model - ALBERT xxlarge sometimes can't converge well for slot prediction.
Intent acc (%) | Slot F1 (%) | Sentence acc (%) | ||
---|---|---|---|---|
Snips | BERT | 99.14 | 96.90 | 93.00 |
BERT + CRF | 98.57 | 97.24 | 93.57 | |
DistilBERT | 98.00 | 96.10 | 91.00 | |
DistilBERT + CRF | 98.57 | 96.46 | 91.85 | |
ALBERT | 98.43 | 97.16 | 93.29 | |
ALBERT + CRF | 99.00 | 96.55 | 92.57 | |
ATIS | BERT | 97.87 | 95.59 | 88.24 |
BERT + CRF | 97.98 | 95.93 | 88.58 | |
DistilBERT | 97.76 | 95.50 | 87.68 | |
DistilBERT + CRF | 97.65 | 95.89 | 88.24 | |
ALBERT | 97.64 | 95.78 | 88.13 | |
ALBERT + CRF | 97.42 | 96.32 | 88.69 |
- 2019/12/03: Add DistilBert and RoBERTa result
- 2019/12/14: Add Albert (large v1) result
- 2019/12/22: Available to predict sentences
- 2019/12/26: Add Albert (xxlarge v1) result
- 2019/12/29: Add CRF option
- 2019/12/30: Available to check
sentence-level semantic frame accuracy
- 2019/01/23: Only show the result related with uncased model