Skip to content

Latest commit

 

History

History
107 lines (85 loc) · 4.24 KB

README.md

File metadata and controls

107 lines (85 loc) · 4.24 KB

JointBERT

(Unofficial) Pytorch implementation of JointBERT: BERT for Joint Intent Classification and Slot Filling

Model Architecture

  • Predict intent and slot at the same time from one BERT model (=Joint model)
  • total_loss = intent_loss + coef * slot_loss (Change coef with --slot_loss_coef option)
  • If you want to use CRF layer, give --use_crf option

Dependencies

  • python>=3.5
  • torch==1.1.0
  • transformers==2.2.2
  • seqeval==0.0.12
  • pytorch-crf==0.7.2

Dataset

Train Dev Test Intent Labels Slot Labels
ATIS 4,478 500 893 21 120
Snips 13,084 700 700 7 72
  • The number of labels are based on the train dataset.
  • Add UNK for labels (For intent and slot labels which are only shown in dev and test dataset)
  • Add PAD for slot label

Training & Evaluation

$ python3 main.py --task {task_name} \
                  --model_type {model_type} \
                  --model_dir {model_dir_name} \
                  --do_train --do_eval \
                  --use_crf

# For ATIS
$ python3 main.py --task atis \
                  --model_type bert \
                  --model_dir atis_model \
                  --do_train --do_eval
# For Snips
$ python3 main.py --task snips \
                  --model_type bert \
                  --model_dir snips_model \
                  --do_train --do_eval

Prediction

  • There should be a trained model before running prediction.
  • You should write sentences in preds.txt in preds directory.
  • If your model is trained using CRF, you must give --use_crf option when running prediction.
$ python3 main.py --task snips \
                  --model_type bert \
                  --model_dir snips_model \
                  --do_pred \
                  --pred_dir preds \
                  --pred_input_file preds.txt

Results

  • Run 5 ~ 10 epochs (Record the best result)
  • RoBERTa takes more epochs to get the best result compare to other models.
  • ALBERT xxlarge sometimes can't converge well for slot prediction.
Intent acc (%) Slot F1 (%) Sentence acc (%)
ATIS BERT 97.87 95.46
BERT + CRF 97.76 96.04
DistilBERT 97.54 94.89
DistilBERT + CRF 97.42 95.89
RoBERTa 97.64 95.72
RoBERTa + CRF 97.64 95.63
ALBERT 98.20 95.59
ALBERT + CRF
Snips BERT 98.29 96.05
BERT + CRF
DistilBERT 98.42 94.10
DistilBERT + CRF
RoBERTa 98.14 94.60
RoBERTa + CRF
ALBERT 98.57 97.48
ALBERT + CRF

Updates

  • 2019/12/03: Add DistilBert and RoBERTa result
  • 2019/12/14: Add Albert (large v1) result
  • 2019/12/22: Available to predict sentences
  • 2019/12/26: Add Albert (xxlarge v1) result
  • 2019/12/29: Add CRF option
  • 2019/12/30: Available to check sentence-level semantic frame accuracy

References