-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjson_data.txt
2703 lines (2703 loc) · 171 KB
/
json_data.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{'data': {'data': [{'title': 'shift distribution – shiftdistribution.com',
'paper': 'http://www.shiftdistribution.com/',
'topic': 'medical distribution shift'},
{'title': 'ehr foundation models improve robustness in the presence ...',
'paper': 'https://www.medrxiv.org/content/10.1101/2022.04.15.22273900v1.full',
'topic': 'medical distribution shift'},
{'title': 'maintaining fairness across distribution shift: do we have ...',
'paper': 'https://montrealethics.ai/maintaining-fairness-across-distribution-shift-do-we-have-viable-solutions-for-real-world-applications/',
'topic': 'medical distribution shift'},
{'title': 'characterizing the value of information in medical notes',
'paper': 'https://aclanthology.org/2020.findings-emnlp.187',
'topic': 'medical distribution shift'},
{'title': 'assessing group-level gender bias in professional evaluations',
'paper': 'https://aclanthology.org/2022.gebnlp-1.11.pdf',
'topic': 'medical distribution shift'},
{'title': 'ziad obermeyer - acl anthology',
'paper': 'https://aclanthology.org/people/z/ziad-obermeyer/',
'topic': 'medical distribution shift'},
{'title': 'preventing failures due to dataset shift: learning predictive ...',
'paper': 'http://proceedings.mlr.press/v89/subbaswamy19a/subbaswamy19a.pdf',
'topic': 'medical distribution shift'},
{'title': 'enhancing unsupervised domain adaptation via semantic ...',
'paper': 'https://www.ijcai.org/proceedings/2022/0426.pdf',
'topic': 'medical distribution shift'},
{'title': 'forecasting patient outcomes in kidney exchange - ijcai',
'paper': 'https://www.ijcai.org/proceedings/2022/0701.pdf',
'topic': 'medical distribution shift'},
{'title': 'distributed patient scheduling in hospitals - ijcai',
'paper': 'https://www.ijcai.org/Proceedings/03/Papers/175.pdf',
'topic': 'medical distribution shift'},
{'title': 'a fine-grained analysis of distribution shifts - openreview',
'paper': 'https://openreview.net/pdf?id=AVTfiZgV64X',
'topic': 'medical distribution shift'},
{'title': '[2110.14019] reliable and trustworthy machine learning for health ...',
'paper': 'https://ar5iv.labs.arxiv.org/html/2110.14019',
'topic': 'medical distribution shift'},
{'title': 'arxiv:1910.00199v3 [cs.cv] 10 feb 2021',
'paper': 'https://arxiv.org/pdf/1910.00199',
'topic': 'medical distribution shift'},
{'title': 'frequency dropout: feature-level regularization via randomized filtering',
'paper': 'https://arxiv.org/abs/2209.09844',
'topic': 'medical distribution shift'},
{'title': 'q-net: query-informed few-shot medical image segmentation',
'paper': 'https://arxiv.org/abs/2208.11451',
'topic': 'medical distribution shift'},
{'title': 'fusion: fully unsupervised test-time stain adaptation via fused normalization statistics',
'paper': 'https://arxiv.org/abs/2208.14206',
'topic': 'medical distribution shift'},
{'title': 'domain adaptation under open set label shift',
'paper': 'https://arxiv.org/abs/2207.13048',
'topic': 'medical distribution shift'},
{'title': 'revisiting inlier and outlier specification for improved out-of-distribution detection',
'paper': 'https://arxiv.org/abs/2207.05286',
'topic': 'medical distribution shift'},
{'title': 'unsupervised domain adaptation using feature disentanglement and gcns for medical image classification',
'paper': 'https://arxiv.org/abs/2206.13123',
'topic': 'medical distribution shift'},
{'title': 'single-domain generalization in medical image segmentation via test-time adaptation from shape dictionary',
'paper': 'https://arxiv.org/abs/2206.14467',
'topic': 'medical distribution shift'},
{'title': 'distributional gaussian processes layers for out-of-distribution detection',
'paper': 'https://arxiv.org/abs/2206.13346',
'topic': 'medical distribution shift'},
{'title': 'certifying some distributional fairness with subpopulation decomposition',
'paper': 'https://arxiv.org/abs/2205.15494',
'topic': 'medical distribution shift'},
{'title': 'fedilc: weighted geometric mean and invariant gradient covariance for federated learning on non-iid data',
'paper': 'https://arxiv.org/abs/2205.09305',
'topic': 'medical distribution shift'},
{'title': 'dltta: dynamic learning rate for test-time adaptation on cross-domain medical images',
'paper': 'https://arxiv.org/abs/2205.13723',
'topic': 'medical distribution shift'},
{'title': 'fraug: tackling federated learning with non-iid features via representation augmentation',
'paper': 'https://arxiv.org/abs/2205.14900',
'topic': 'medical distribution shift'},
{'title': 'cd$^2$-pfed: cyclic distillation-guided channel decoupling for model personalization in federated learning',
'paper': 'https://arxiv.org/abs/2204.03880',
'topic': 'medical distribution shift'},
{'title': 'direct mapping from pet coincidence data to proton-dose and positron activity using a deep learning approach',
'paper': 'https://arxiv.org/abs/2204.13905',
'topic': 'medical distribution shift'},
{'title': 'rood-mri: benchmarking the robustness of deep learning segmentation models to out-of-distribution and corrupted data in mri',
'paper': 'https://arxiv.org/abs/2203.06060',
'topic': 'medical distribution shift'},
{'title': 'efficient fully distributed federated learning with adaptive local links',
'paper': 'https://arxiv.org/abs/2203.12281',
'topic': 'medical distribution shift'},
{'title': 'larmor frequency shift from magnetized cylinders with arbitrary orientation distribution',
'paper': 'https://arxiv.org/abs/2203.01191',
'topic': 'medical distribution shift'},
{'title': 'biomechanical lower limb model to predict patellar position alteration after medial open wedge high tibial osteotomy',
'paper': 'https://arxiv.org/abs/2203.16903',
'topic': 'medical distribution shift'},
{'title': 'unsupervised domain adaptation for cross-modality retinal vessel segmentation via disentangling representation style transfer and collaborative consistency learning',
'paper': 'https://arxiv.org/abs/2201.04812',
'topic': 'medical distribution shift'},
{'title': 'comparison of measurement systems for assessing number- and mass-based particle filtration efficiency',
'paper': 'https://arxiv.org/abs/2201.12446',
'topic': 'medical distribution shift'},
{'title': 'multi-domain balanced sampling improves out-of-distribution generalization of chest x-ray pathology prediction models',
'paper': 'https://arxiv.org/abs/2112.13734',
'topic': 'medical distribution shift'},
{'title': 'specificity-preserving federated learning for mr image reconstruction',
'paper': 'https://arxiv.org/abs/2112.05752',
'topic': 'medical distribution shift'},
{'title': 'mitigating domain shift in ai-based tuberculosis screening with unsupervised domain adaptation',
'paper': 'https://arxiv.org/abs/2111.04893',
'topic': 'medical distribution shift'},
{'title': 'reliable and trustworthy machine learning for health using dataset shift detection',
'paper': 'https://arxiv.org/abs/2110.14019',
'topic': 'medical distribution shift'},
{'title': 'natural attribute-based shift detection',
'paper': 'https://arxiv.org/abs/2110.09276',
'topic': 'medical distribution shift'},
{'title': 'dispensed transformer network for unsupervised domain adaptation',
'paper': 'https://arxiv.org/abs/2110.14944',
'topic': 'medical distribution shift'},
{'title': 'adapt to adaptation: learning personalization for cross-silo federated learning',
'paper': 'https://arxiv.org/abs/2110.08394',
'topic': 'medical distribution shift'},
{'title': 'distributionally robust multi-output regression ranking',
'paper': 'https://arxiv.org/abs/2109.12803',
'topic': 'medical distribution shift'},
{'title': 'unsupervised domain adaptation in semantic segmentation based on pixel alignment and self-training',
'paper': 'https://arxiv.org/abs/2109.14219',
'topic': 'medical distribution shift'},
{'title': 'the impact of domain shift on left and right ventricle segmentation in short axis cardiac mr images',
'paper': 'https://arxiv.org/abs/2109.13230',
'topic': 'medical distribution shift'},
{'title': 'a study of the multi-agent benefit distribution model in the transformation of medical science and technology achievements',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3340037.3340038',
'topic': 'medical distribution shift'},
{'title': 'research of selection of distribution in the tasks of the regional system of medical prevention',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3388984.3390873',
'topic': 'medical distribution shift'},
{'title': 'comparative study of mutualisation scenarios for distribution of non-medical products',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3286606.3286828',
'topic': 'medical distribution shift'},
{'title': 'medical specialists retrieval system using unified medical language system',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3107514.3107521',
'topic': 'medical distribution shift'},
{'title': 'distribution scheduling model of multiple temperature refrigerated container system',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3317614.3317628',
'topic': 'medical distribution shift'},
{'title': 'phosphorylated physarum polycephalum 14-3-3 modulates the distribution of the p. polycephalum sr-like protein through the arginine/serine-rich domain: p14-3-3 modulates the distribution of psr',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3460238.3460261',
'topic': 'medical distribution shift'},
{'title': 'energy exchange model in routed energy distribution network',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3360322.3361017',
'topic': 'medical distribution shift'},
{'title': 'a study on the impact of shopping value on loyalty due to the activation of omni-channel based on mobile application by distribution companies',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3317614.3317636',
'topic': 'medical distribution shift'},
{'title': 'a phase shifting multiple filter design methodology for lucy-richardson deconvolution of log-mixtures complex rtn tail distribution',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/2800986.2800996',
'topic': 'medical distribution shift'},
{'title': 'efficient signature scheme using extended chaotic maps for medical imaging records',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3418094.3418144',
'topic': 'medical distribution shift'},
{'title': 'maximum domain of attraction of the conditional exponential-weibull distribution',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3274250.3274256',
'topic': 'medical distribution shift'},
{'title': 'medical nutrition therapy for adult patients receiving extracorporeal membrane oxygenation',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3472813.3472829',
'topic': 'medical distribution shift'},
{'title': 'optimization of contract distribution based on multi-objective estimation of distribution algorithm',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3194452.3194455',
'topic': 'medical distribution shift'},
{'title': 'open routed energy distribution network based on a concept of energy router in smart grid',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3366030.3366036',
'topic': 'medical distribution shift'},
{'title': 'distribution big data technology of active distribution network based on edge computing',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3501409.3501637',
'topic': 'medical distribution shift'},
{'title': 'kernel distribution embeddings: universal kernels, characteristic kernels and kernel metrics on distributions',
'paper': 'https://dl.acm.org/doi/pdf/10.5555/3291125.3309606',
'topic': 'medical distribution shift'},
{'title': 'fisher consistency for prior probability shift',
'paper': 'https://dl.acm.org/doi/pdf/10.5555/3122009.3176839',
'topic': 'medical distribution shift'},
{'title': 'distribution-level markets under high renewable energy penetration',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3538637.3538846',
'topic': 'medical distribution shift'},
{'title': 'an estimation of distribution algorithm based on the natural gradient and the boltzmann distribution',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/2739480.2754803',
'topic': 'medical distribution shift'},
{'title': 'research on university takeaway o2o distribution mode based on centralized distribution of third-party sub-region',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3404649.3404651',
'topic': 'medical distribution shift'},
{'title': 'niching an estimation-of-distribution algorithm by hierarchical gaussian mixture learning',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3071178.3071283',
'topic': 'medical distribution shift'},
{'title': 'the line loss calculation method of active distribution network based on equivalent capacity method',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3331453.3361314',
'topic': 'medical distribution shift'},
{'title': 'simulation application for improving the efficiency of new distribution centers',
'paper': 'https://dl.acm.org/doi/pdf/10.1109/DS-RT.2015.20',
'topic': 'medical distribution shift'},
{'title': 'application and effect analysis of series reactive power compensation in low voltage distribution network',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3429536.3429537',
'topic': 'medical distribution shift'},
{'title': 'supporting the self-care practices of shift workers',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3282894.3282914',
'topic': 'medical distribution shift'},
{'title': 'towards flexible wireless charging for medical implants using distributed antenna system',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3372224.3380899',
'topic': 'medical distribution shift'},
{'title': 'multiobjective discrete differential evolution for service restoration in energy distribution systems',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/2908961.2931642',
'topic': 'medical distribution shift'},
{'title': 'medical modeling and numerical analysis of thoracoabdominal aortic aneurysm',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3340037.3340048',
'topic': 'medical distribution shift'},
{'title': 'tough shift: exploring the complexities of shifting residential electricity use through a casual mobile game',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/2793107.2793108',
'topic': 'medical distribution shift'},
{'title': 'accessibility analysis of hospitals medical services in urban modernization',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3418094.3418101',
'topic': 'medical distribution shift'},
{'title': 'test-time adaptation with calibration of medical image classification nets for label distribution shift',
'paper': 'https://arxiv.org/pdf/2207.00769.pdf',
'topic': 'medical distribution shift'},
{'title': 'performance deterioration of deep neural networks for lesion classification in mammography due to distribution shift: an analysis based on artificially created distribution shift',
'paper': 'https://doi.org/10.1117/12.2551346',
'topic': 'medical distribution shift'},
{'title': 'how reliable are out-of-distribution generalization methods for medical image segmentation?',
'paper': 'https://arxiv.org/pdf/2109.01668.pdf',
'topic': 'medical distribution shift'},
{'title': 'the domain shift problem of medical image segmentation and vendor-adaptation by unet-gan',
'paper': 'https://arxiv.org/pdf/1910.13681.pdf',
'topic': 'medical distribution shift'},
{'title': 'is the trend of increasing use of patient-reported outcome measures in medical device studies the sign of shift towards value-based purchasing in europe?',
'paper': 'https://doi.org/10.1007/s10198-019-01070-1',
'topic': 'medical distribution shift'},
{'title': 'influence of response shift and disposition on patient-reported outcomes may lead to suboptimal medical decisions: a medical ethics perspective',
'paper': 'https://doi.org/10.1186/s12910-019-0397-3',
'topic': 'medical distribution shift'},
{'title': 'impact of shift duration on alertness among air‐medical emergency care clinician shift workers',
'paper': 'https://doi.org/10.1002/ajim.22956',
'topic': 'medical distribution shift'},
{'title': 'vaccine distribution-equity left behind?',
'paper': 'https://www.ncbi.nlm.nih.gov/pubmed/33512381',
'topic': 'medical distribution shift'},
{'title': 'methods of generating submicrometer phase-shift perfluorocarbon droplets for applications in medical ultrasonography',
'paper': 'http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7604095',
'topic': 'medical distribution shift'},
{'title': 'robust machine learning variable importance analyses of ...',
'paper': 'https://pubmed.ncbi.nlm.nih.gov/29527659/',
'topic': 'Robust Machine Learning Medical'},
{'title': 'secure and robust machine learning for healthcare ... - core',
'paper': 'https://core.ac.uk/download/pdf/328760438.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'rethink robustness of deep learning models for medical ...',
'paper': 'https://aimi.stanford.edu/events/research-meeting/aimi-research-meeting-rethink-robustness-deep-learning-models-medical-image',
'topic': 'Robust Machine Learning Medical'},
{'title': 'identification of robust deep neural network models of ... - nature',
'paper': 'https://www.nature.com/articles/s41746-022-00651-4',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robustness of ai-based prognostic and systems health ...',
'paper': 'https://www.sciencedirect.com/science/article/abs/pii/S1367578821000195',
'topic': 'Robust Machine Learning Medical'},
{'title': 'scalable few-shot learning of robust biomedical name ...',
'paper': 'https://aclanthology.org/2021.bionlp-1.3.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'applied medical code mapping with character-based deep ...',
'paper': 'https://aclanthology.org/2021.naloma-1.2.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'enhancing model robustness and fairness with causality',
'paper': 'https://aclanthology.org/2021.cinlp-1.3.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'identifying patients with pain in emergency departments ...',
'paper': 'https://aclanthology.org/U19-1015.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robust machine translation evaluation with entailment ...',
'paper': 'https://aclanthology.org/P09-1034.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'does robustness improve fairness? approaching fairness ...',
'paper': 'https://aclanthology.org/2021.findings-acl.294.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'on the lack of robust interpretability of neural text classifiers',
'paper': 'https://aclanthology.org/2021.findings-acl.327.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'supervised machine learning for extractive query based ...',
'paper': 'https://aclanthology.org/W18-5604.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robust benchmarking for machine learning of clinical entity ...',
'paper': 'http://proceedings.mlr.press/v126/agrawal20a/agrawal20a.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'feature robustness in non-stationary health records:',
'paper': 'http://proceedings.mlr.press/v106/nestor19a/nestor19a.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'just train twice: improving group robustness without ...',
'paper': 'http://proceedings.mlr.press/v139/liu21f/liu21f.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'addressing the false negative problem of deep learning ...',
'paper': 'https://proceedings.mlr.press/v121/cheng20a.html',
'topic': 'Robust Machine Learning Medical'},
{'title': 'what clinicians want: contextualizing explainable machine ...',
'paper': 'http://proceedings.mlr.press/v106/tonekaboni19a/tonekaboni19a.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'smoothed geometry for robust attribution - nips papers',
'paper': 'https://papers.nips.cc/paper/2020/file/9d94c8981a48d12adfeecfe1ae6e0ec1-Paper.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'distilling robust and non-robust features in adversarial ...',
'paper': 'https://papers.nips.cc/paper/2021/file/8e5e15c4e6d09c8333a17843461041a9-Paper.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'exploring architectural ingredients of adversarially robust ...',
'paper': 'https://papers.nips.cc/paper/2021/file/2bd7f907b7f5b6bbd91822c0c7b835f6-Paper.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'adversarial training helps transfer learning via better ...',
'paper': 'https://papers.nips.cc/paper/2021/file/d3aeec875c479e55d1cdeea161842ec6-Paper.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'on single source robustness in deep fusion models',
'paper': 'https://papers.nips.cc/paper/8728-on-single-source-robustness-in-deep-fusion-models.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'coresets for robust training of neural networks against ...',
'paper': 'https://papers.nips.cc/paper/2020/file/8493eeaccb772c0878f99d60a0bd2bb3-Paper.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robust classification under sample selection bias',
'paper': 'http://papers.nips.cc/paper/5458-robust-classification-under-sample-selection-bias.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'metric learning for adversarial robustness',
'paper': 'https://papers.nips.cc/paper/8339-metric-learning-for-adversarial-robustness.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robust high-dimensional classification from few positive ...',
'paper': 'https://www.ijcai.org/proceedings/2022/271',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robust high-dimensional classification from few ... - ijcai',
'paper': 'https://www.ijcai.org/proceedings/2022/0271.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'multimodal attentional neural networks for diagnosis prediction',
'paper': 'https://www.ijcai.org/proceedings/2019/0823.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'towards adversarially robust deep image denoising - ijcai',
'paper': 'https://www.ijcai.org/proceedings/2022/0211.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'hybrid learning system for large-scale medical image analysis',
'paper': 'https://www.ijcai.org/proceedings/2022/0824.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'ai-powered posture training: application of machine learning ...',
'paper': 'https://www.ijcai.org/proceedings/2019/0805.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'certified robustness via randomized smoothing over ... - ijcai',
'paper': 'https://www.ijcai.org/proceedings/2022/0467.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robust interpretable text classification against spurious ...',
'paper': 'https://www.ijcai.org/proceedings/2022/0616.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robust and sparse fuzzy k-means clustering - ijcai',
'paper': 'https://www.ijcai.org/Proceedings/16/Papers/317.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'carben: composite adversarial robustness benchmark',
'paper': 'https://www.ijcai.org/proceedings/2022/0851.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robust medical image segmentation by adapting neural ...',
'paper': 'https://openreview.net/pdf?id=tv_pkmFzdC',
'topic': 'Robust Machine Learning Medical'},
{'title': 'measuring robustness in deep learning based compressive ...',
'paper': 'https://openreview.net/pdf?id=HqUeGFCQzX5',
'topic': 'Robust Machine Learning Medical'},
{'title': 'conditional synthetic data generation for robust machine ...',
'paper': 'https://openreview.net/pdf?id=o4JWdxYTjL8',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robust training of recurrent neural networks to handle missing ...',
'paper': 'https://openreview.net/forum?id=S1jqMb2oM',
'topic': 'Robust Machine Learning Medical'},
{'title': 'reliable and trustworthy machine learning for ... - nips papers',
'paper': 'https://openreview.net/pdf?id=hNMOSUxE8o6',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robust neural networks are more interpretable for genomics',
'paper': 'https://openreview.net/pdf/6b9befb80f2336b2c81716f766c4d4572c2fc827.pdf',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robust image segmentation quality assessment - openreview',
'paper': 'https://openreview.net/pdf?id=nyhZXiaotm',
'topic': 'Robust Machine Learning Medical'},
{'title': 'out of distribution detection and adversarial attacks on deep ...',
'paper': 'https://openreview.net/forum?id=1iy7rdPCt_',
'topic': 'Robust Machine Learning Medical'},
{'title': '[2103.08291] robust machine learning in critical care - arxiv',
'paper': 'https://arxiv.org/abs/2103.08291',
'topic': 'Robust Machine Learning Medical'},
{'title': 'secure and robust machine learning for healthcare ... - arxiv',
'paper': 'https://arxiv.org/pdf/2001.08103',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robust machine learning in critical care - arxiv',
'paper': 'https://arxiv.org/pdf/2103.08291',
'topic': 'Robust Machine Learning Medical'},
{'title': 'online reflective learning for robust medical image ... - arxiv',
'paper': 'http://arxiv.org/abs/2207.00476',
'topic': 'Robust Machine Learning Medical'},
{'title': 'style curriculum learning for robust medical image ... - arxiv',
'paper': 'https://arxiv.org/abs/2108.00402',
'topic': 'Robust Machine Learning Medical'},
{'title': 'deep learning models are not robust against noise in clinical ...',
'paper': 'https://arxiv.org/abs/2108.12242',
'topic': 'Robust Machine Learning Medical'},
{'title': 'evaluating the robustness of self-supervised learning in ...',
'paper': 'https://arxiv.org/abs/2105.06986',
'topic': 'Robust Machine Learning Medical'},
{'title': 'towards to robust and generalized medical image ... - arxiv',
'paper': 'https://arxiv.org/abs/2108.03823',
'topic': 'Robust Machine Learning Medical'},
{'title': "uncertainty estimations methods for a deep learning model to aid in clinical decision-making -- a clinician's perspective",
'paper': 'https://arxiv.org/abs/2210.00589',
'topic': 'Robust Machine Learning Medical'},
{'title': 'feddar: federated domain-aware representation learning',
'paper': 'https://arxiv.org/abs/2209.04007',
'topic': 'Robust Machine Learning Medical'},
{'title': '3d ux-net: a large kernel volumetric convnet modernizing hierarchical transformer for medical image segmentation',
'paper': 'https://arxiv.org/abs/2209.15076',
'topic': 'Robust Machine Learning Medical'},
{'title': 'stacking ensemble learning in deep domain adaptation for ophthalmic image classification',
'paper': 'https://arxiv.org/abs/2209.13420',
'topic': 'Robust Machine Learning Medical'},
{'title': 'identifying differential equations to predict blood glucose using sparse identification of nonlinear systems',
'paper': 'https://arxiv.org/abs/2209.13852',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robust and efficient imbalanced positive-unlabeled learning with self-supervision',
'paper': 'https://arxiv.org/abs/2209.02459',
'topic': 'Robust Machine Learning Medical'},
{'title': 'generalizability of adversarial robustness under distribution shifts',
'paper': 'https://arxiv.org/abs/2209.15042',
'topic': 'Robust Machine Learning Medical'},
{'title': 'fairness and robustness in anti-causal prediction',
'paper': 'https://arxiv.org/abs/2209.09423',
'topic': 'Robust Machine Learning Medical'},
{'title': 'feature selection integrated deep learning for ultrahigh dimensional and highly correlated feature space',
'paper': 'https://arxiv.org/abs/2209.07011',
'topic': 'Robust Machine Learning Medical'},
{'title': 'de-identification of french unstructured clinical notes for machine learning tasks',
'paper': 'https://arxiv.org/abs/2209.09631',
'topic': 'Robust Machine Learning Medical'},
{'title': 'boxshrink: from bounding boxes to segmentation masks',
'paper': 'https://arxiv.org/abs/2208.03142',
'topic': 'Robust Machine Learning Medical'},
{'title': 'rrwavenet: a compact end-to-end multi-scale residual cnn for robust ppg respiratory rate estimation',
'paper': 'https://arxiv.org/abs/2208.08672',
'topic': 'Robust Machine Learning Medical'},
{'title': 'geoecg: data augmentation via wasserstein geodesic perturbation for robust electrocardiogram prediction',
'paper': 'https://arxiv.org/abs/2208.01220',
'topic': 'Robust Machine Learning Medical'},
{'title': 'adaptive temperature scaling for robust calibration of deep neural networks',
'paper': 'https://arxiv.org/abs/2208.00461',
'topic': 'Robust Machine Learning Medical'},
{'title': 'rethinking degradation: radiograph super-resolution via aid-srgan',
'paper': 'https://arxiv.org/abs/2208.03008',
'topic': 'Robust Machine Learning Medical'},
{'title': 'an intertwined neural network model for eeg classification in brain-computer interfaces',
'paper': 'https://arxiv.org/abs/2208.08860',
'topic': 'Robust Machine Learning Medical'},
{'title': 'machine learning-based eeg applications and markets',
'paper': 'https://arxiv.org/abs/2208.05144',
'topic': 'Robust Machine Learning Medical'},
{'title': 'bayesian pseudo labels: expectation maximization for robust and efficient semi-supervised segmentation',
'paper': 'https://arxiv.org/abs/2208.04435',
'topic': 'Robust Machine Learning Medical'},
{'title': 'deformation equivariant cross-modality image synthesis with paired non-aligned training data',
'paper': 'https://arxiv.org/abs/2208.12491',
'topic': 'Robust Machine Learning Medical'},
{'title': 'federated learning for medical applications: a taxonomy, current trends, challenges, and future research directions',
'paper': 'https://arxiv.org/abs/2208.03392',
'topic': 'Robust Machine Learning Medical'},
{'title': 'fast-aid brain: fast and accurate segmentation tool using artificial intelligence developed for brain',
'paper': 'https://arxiv.org/abs/2208.14360',
'topic': 'Robust Machine Learning Medical'},
{'title': 'slice-level detection of intracranial hemorrhage on ct using deep descriptors of adjacent slices',
'paper': 'https://arxiv.org/abs/2208.03403',
'topic': 'Robust Machine Learning Medical'},
{'title': 'vector-based data improves left-right eye-tracking classifier performance after a covariate distributional shift',
'paper': 'https://arxiv.org/abs/2208.00465',
'topic': 'Robust Machine Learning Medical'},
{'title': 'learning from imperfect training data using a robust loss function: application to brain image segmentation',
'paper': 'https://arxiv.org/abs/2208.04941',
'topic': 'Robust Machine Learning Medical'},
{'title': 'predicting microsatellite instability and key biomarkers in colorectal cancer from h&e-stained images: achieving sota predictive performance with fewer data using swin transformer',
'paper': 'https://arxiv.org/abs/2208.10495',
'topic': 'Robust Machine Learning Medical'},
{'title': 'bpfish: blockchain and privacy-preserving fl inspired smart healthcare',
'paper': 'https://arxiv.org/abs/2207.11654',
'topic': 'Robust Machine Learning Medical'},
{'title': 'decorrelative network architecture for robust electrocardiogram classification',
'paper': 'https://arxiv.org/abs/2207.09031',
'topic': 'Robust Machine Learning Medical'},
{'title': 'liver segmentation using turbolift learning for ct and cone-beam c-arm perfusion imaging',
'paper': 'https://arxiv.org/abs/2207.10167',
'topic': 'Robust Machine Learning Medical'},
{'title': 'online reflective learning for robust medical image segmentation',
'paper': 'https://arxiv.org/abs/2207.00476',
'topic': 'Robust Machine Learning Medical'},
{'title': 'representation learning with information theory for covid-19 detection',
'paper': 'https://arxiv.org/abs/2207.01437',
'topic': 'Robust Machine Learning Medical'},
{'title': 'suppressing poisoning attacks on federated learning for medical imaging',
'paper': 'https://arxiv.org/abs/2207.10804',
'topic': 'Robust Machine Learning Medical'},
{'title': 'advances in prediction of readmission rates using long term short term memory networks on healthcare insurance data',
'paper': 'https://arxiv.org/abs/2207.00066',
'topic': 'Robust Machine Learning Medical'},
{'title': 'vector quantisation for robust segmentation',
'paper': 'https://arxiv.org/abs/2207.01919',
'topic': 'Robust Machine Learning Medical'},
{'title': "pose-based tremor classification for parkinson's disease diagnosis from video",
'paper': 'https://arxiv.org/abs/2207.06828',
'topic': 'Robust Machine Learning Medical'},
{'title': 'machine learning to predict the antimicrobial activity of cold atmospheric plasma-activated liquids',
'paper': 'https://arxiv.org/abs/2207.12478',
'topic': 'Robust Machine Learning Medical'},
{'title': 'towards accurate and robust classification in continuously transitioning industrial sprays with mixup',
'paper': 'https://arxiv.org/abs/2207.09609',
'topic': 'Robust Machine Learning Medical'},
{'title': 'identifying the context shift between test benchmarks and production data',
'paper': 'https://arxiv.org/abs/2207.01059',
'topic': 'Robust Machine Learning Medical'},
{'title': 'pro-tip: phantom for robust automatic ultrasound calibration by tip detection',
'paper': 'https://arxiv.org/abs/2206.05962',
'topic': 'Robust Machine Learning Medical'},
{'title': 'a review of causality for learning algorithms in medical image analysis',
'paper': 'https://arxiv.org/abs/2206.05498',
'topic': 'Robust Machine Learning Medical'},
{'title': 'decentralized distributed learning with privacy-preserving data synthesis',
'paper': 'https://arxiv.org/abs/2206.10048',
'topic': 'Robust Machine Learning Medical'},
{'title': 'self-supervision on images and text reduces reliance on visual shortcut features',
'paper': 'https://arxiv.org/abs/2206.07155',
'topic': 'Robust Machine Learning Medical'},
{'title': 'amos: a large-scale abdominal multi-organ benchmark for versatile medical image segmentation',
'paper': 'https://arxiv.org/abs/2206.08023',
'topic': 'Robust Machine Learning Medical'},
{'title': 'from labels to priors in capsule endoscopy: a prior guided approach for improving generalization with few labels',
'paper': 'https://arxiv.org/abs/2206.05288',
'topic': 'Robust Machine Learning Medical'},
{'title': 'breast cancer classification using deep learned features boosted with handcrafted features',
'paper': 'https://arxiv.org/abs/2206.12815',
'topic': 'Robust Machine Learning Medical'},
{'title': 'cass: cross architectural self-supervision for medical image analysis',
'paper': 'https://arxiv.org/abs/2206.04170',
'topic': 'Robust Machine Learning Medical'},
{'title': 'adaptive adversarial training to improve adversarial robustness of dnns for medical image segmentation and detection',
'paper': 'https://arxiv.org/abs/2206.01736',
'topic': 'Robust Machine Learning Medical'},
{'title': 'learning underrepresented classes from decentralized partially labeled medical images',
'paper': 'https://arxiv.org/abs/2206.15353',
'topic': 'Robust Machine Learning Medical'},
{'title': 'independent evaluation of state-of-the-art deep networks for mammography',
'paper': 'https://arxiv.org/abs/2206.12407',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robust monitoring for medical cyber-physical systems',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3446913.3460318',
'topic': 'Robust Machine Learning Medical'},
{'title': 'detection of nasopharyngeal carcinoma using routine medical tests via machine learning',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3524086.3524102',
'topic': 'Robust Machine Learning Medical'},
{'title': 'a machine learning approach for medical device classification',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3494193.3494232',
'topic': 'Robust Machine Learning Medical'},
{'title': 'machine learning for the developing world',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3210548',
'topic': 'Robust Machine Learning Medical'},
{'title': 'prediction of adverse drug reaction using machine learning and deep learning based on an imbalanced electronic medical records dataset',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3472813.3472817',
'topic': 'Robust Machine Learning Medical'},
{'title': 'explainability methods for machine learning systems for multimodal medical datasets: research proposal',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3524273.3533925',
'topic': 'Robust Machine Learning Medical'},
{'title': 'analyzing the robustness of open-world machine learning',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3338501.3357372',
'topic': 'Robust Machine Learning Medical'},
{'title': 'validation methods to promote real-world applicability of machine learning in medicine',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3441369.3441372',
'topic': 'Robust Machine Learning Medical'},
{'title': 'machine learning approaches for extracting genetic medical data information',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3018896.3066906',
'topic': 'Robust Machine Learning Medical'},
{'title': 'deep learning for medical anomaly detection – a survey',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3464423',
'topic': 'Robust Machine Learning Medical'},
{'title': 'evaluation of applied machine learning for health misinformation detection via survey of medical professionals on controversial topics in pediatrics',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3472813.3472814',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robust i/o-compute concurrency for machine learning pipelines in constrained cyber-physical devices',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3461648.3463842',
'topic': 'Robust Machine Learning Medical'},
{'title': 'the early detection of subclinical ketosis in dairy cows using machine learning methods',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3055635.3056625',
'topic': 'Robust Machine Learning Medical'},
{'title': 'text classification of diseases treated by traditional chinese medicine prescription based on machine learning',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3429889.3429895',
'topic': 'Robust Machine Learning Medical'},
{'title': 'deep learning in medical imaging: fmri big data analysis via convolutional neural networks',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3219104.3229250',
'topic': 'Robust Machine Learning Medical'},
{'title': 'multi-layer representation learning for medical concepts',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/2939672.2939823',
'topic': 'Robust Machine Learning Medical'},
{'title': 'a robust framework for accelerated outcome-driven risk factor identification from ehr',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3292500.3330718',
'topic': 'Robust Machine Learning Medical'},
{'title': 'improving early prognosis of dementia using machine learning methods',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3502433',
'topic': 'Robust Machine Learning Medical'},
{'title': 'on the need of machine learning as a service for the internet of things',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3109761.3109783',
'topic': 'Robust Machine Learning Medical'},
{'title': 'federated multi-view learning for private medical data integration and analysis',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3501816',
'topic': 'Robust Machine Learning Medical'},
{'title': 'federated learning in a medical context: a systematic literature review',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3412357',
'topic': 'Robust Machine Learning Medical'},
{'title': 'automatic processing of electronic medical records using deep learning',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3240925.3240961',
'topic': 'Robust Machine Learning Medical'},
{'title': "a multi-agent feature selection and hybrid classification model for parkinson's disease diagnosis",
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3433180',
'topic': 'Robust Machine Learning Medical'},
{'title': 'object detection and classification using machine learning techniques: a comparison of haar cascades and neural networks',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3484824.3484895',
'topic': 'Robust Machine Learning Medical'},
{'title': 'automatic differentiation in machine learning: a survey',
'paper': 'https://dl.acm.org/doi/pdf/10.5555/3122009.3242010',
'topic': 'Robust Machine Learning Medical'},
{'title': 'an adversarial approach for the robust classification of pneumonia from chest radiographs',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3368555.3384458',
'topic': 'Robust Machine Learning Medical'},
{'title': 'analysis of machine learning models predicting quality of life for cancer patients',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3444757.3485103',
'topic': 'Robust Machine Learning Medical'},
{'title': 'diagnosis of methylmalonic acidemia using machine learning methods',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3340997.3341000',
'topic': 'Robust Machine Learning Medical'},
{'title': 'assuring the machine learning lifecycle: desiderata, methods, and challenges',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3453444',
'topic': 'Robust Machine Learning Medical'},
{'title': 'bringing machine learning closer to non-experts: proposal of a user-friendly machine learning tool in the healthcare domain',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3486011.3486469',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robust machine learning in critical care — software engineering and medical perspectives',
'paper': 'http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9474414',
'topic': 'Robust Machine Learning Medical'},
{'title': 'open source robust machine learning software for medical patient data analysis and cloud storage',
'paper': 'https://doi.org/10.1007/978-3-030-64610-3_104',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robust machine learning variable importance analyses of medical conditions for health care spending',
'paper': 'https://doi.org/10.1111/1475-6773.12848',
'topic': 'Robust Machine Learning Medical'},
{'title': 'robust machine learning against adversarial samples at test time',
'paper': 'http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9149002',
'topic': 'Robust Machine Learning Medical'},
{'title': 'lung cancer prediction using robust machine learning and image enhancement methods on extracted gray-level co-occurrence matrix features',
'paper': 'https://doi.org/10.3390/app12136517',
'topic': 'Robust Machine Learning Medical'},
{'title': 'a robust machine learning predictive model for maternal health risk',
'paper': 'http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9885515',
'topic': 'Robust Machine Learning Medical'},
{'title': "robust medical image registration and motion modeling based on machine learning. (le recalage robuste d'images médicales et la modélisation du mouvement basée sur l'apprentissage profond)",
'paper': 'https://tel.archives-ouvertes.fr/tel-02954033',
'topic': 'Robust Machine Learning Medical'},
{'title': 'a robust and stable gene selection algorithm based on graph theory and machine learning',
'paper': 'https://doi.org/10.1186/s40246-021-00366-9',
'topic': 'Robust Machine Learning Medical'},
{'title': 'data distribution shifts and monitoring - chip huyen',
'paper': 'https://huyenchip.com/2022/02/07/data-distribution-shifts-and-monitoring.html',
'topic': 'clinical distribution shift'},
{'title': 'shifting the distribution | evidence for population health',
'paper': 'https://academic.oup.com/book/9251/chapter/155945428',
'topic': 'clinical distribution shift'},
{'title': 'principles for tackling distribution shift - youtube',
'paper': 'https://www.youtube.com/watch?v=QKBh6TmvBaw',
'topic': 'clinical distribution shift'},
{'title': 'zachary c. lipton: deep learning under distribution shift',
'paper': 'https://www.youtube.com/watch?v=WhpZKIra-FQ',
'topic': 'clinical distribution shift'},
{'title': 'preventing dataset shift from breaking machine-learning ...',
'paper': 'https://hal.archives-ouvertes.fr/hal-03293375/file/main.pdf',
'topic': 'clinical distribution shift'},
{'title': 'adapting event extractors to medical data - acl anthology',
'paper': 'https://aclanthology.org/2021.eacl-main.258.pdf',
'topic': 'clinical distribution shift'},
{'title': 'distinguishing clinical sentiment: the importance of domain ...',
'paper': 'https://aclanthology.org/W19-1915.pdf',
'topic': 'clinical distribution shift'},
{'title': 'the performance differences of a medical code prediction ...',
'paper': 'https://aclanthology.org/2022.clinicalnlp-1.10.pdf',
'topic': 'clinical distribution shift'},
{'title': 'investigating the challenges of temporal relation extraction ...',
'paper': 'https://aclanthology.org/W18-5607.pdf',
'topic': 'clinical distribution shift'},
{'title': 'rethinking group-robust algorithms in a label-wise setting',
'paper': 'https://aclanthology.org/2022.findings-acl.192.pdf',
'topic': 'clinical distribution shift'},
{'title': 'analyzing dynamic adversarial training data in the limit',
'paper': 'https://aclanthology.org/2022.findings-acl.18.pdf',
'topic': 'clinical distribution shift'},
{'title': 'how to leverage the multimodal ehr data for better medical ...',
'paper': 'https://aclanthology.org/2021.emnlp-main.329.pdf',
'topic': 'clinical distribution shift'},
{'title': 'gcn with external knowledge for clinical event detection',
'paper': 'https://aclanthology.org/2021.ccl-1.106.pdf',
'topic': 'clinical distribution shift'},
{'title': 'examining dataset shift during prospective validation',
'paper': 'https://proceedings.mlr.press/v149/otles21a/otles21a.pdf',
'topic': 'clinical distribution shift'},
{'title': 'evaluating domain generalization for survival analysis in ...',
'paper': 'https://proceedings.mlr.press/v174/pfisterer22a/pfisterer22a.pdf',
'topic': 'clinical distribution shift'},
{'title': 'understanding clinical collaborations through federated ...',
'paper': 'https://proceedings.mlr.press/v149/caldas21a/caldas21a.pdf',
'topic': 'clinical distribution shift'},
{'title': 'domain adaptation under target and conditional shift',
'paper': 'http://proceedings.mlr.press/v28/zhang13d.pdf',
'topic': 'clinical distribution shift'},
{'title': 'robust causal inference under covariate shift via worst-case ...',
'paper': 'http://proceedings.mlr.press/v125/jeong20a/jeong20a.pdf',
'topic': 'clinical distribution shift'},
{'title': 'what went wrong and when ... - review for neurips paper',
'paper': 'https://papers.nips.cc/paper/2020/file/08fa43588c2571ade19bc0fa5936e028-Review.html',
'topic': 'clinical distribution shift'},
{'title': 'what went wrong and when? instance-wise feature ...',
'paper': 'https://papers.nips.cc/paper/2020/hash/08fa43588c2571ade19bc0fa5936e028-Abstract.html',
'topic': 'clinical distribution shift'},
{'title': 'evaluating model performance under worst-case ...',
'paper': 'https://papers.nips.cc/paper/2021/file/908075ea2c025c335f4865f7db427062-Paper.pdf',
'topic': 'clinical distribution shift'},
{'title': 'from predictions to decisions: using l kahead regularization',
'paper': 'https://papers.nips.cc/paper/2020/file/2adcfc3929e7c03fac3100d3ad51da26-Paper.pdf',
'topic': 'clinical distribution shift'},
{'title': 'domain generalization via model-agnostic learning of ...',
'paper': 'https://papers.nips.cc/paper/8873-domain-generalization-via-model-agnostic-learning-of-semantic-features.pdf',
'topic': 'clinical distribution shift'},
{'title': 'improving robustness against common corruptions by ...',
'paper': 'https://papers.nips.cc/paper/2020/file/85690f81aadc1749175c187784afc9ee-Paper.pdf',
'topic': 'clinical distribution shift'},
{'title': 'likelihood ratios for out-of-distribution detection - openreview',
'paper': 'https://papers.nips.cc/paper/9611-likelihood-ratios-for-out-of-distribution-detection.pdf',
'topic': 'clinical distribution shift'},
{'title': 'the "moving targets" training algorithm',
'paper': 'http://papers.nips.cc/paper/233-the-moving-targets-training-algorithm.pdf',
'topic': 'clinical distribution shift'},
{'title': 'self-supervised adversarial distribution regularization for ...',
'paper': 'https://www.ijcai.org/proceedings/2021/0431.pdf',
'topic': 'clinical distribution shift'},
{'title': "modeling physicians' utterances to explore diagnostic ... - ijcai",
'paper': 'https://www.ijcai.org/proceedings/2017/0517.pdf',
'topic': 'clinical distribution shift'},
{'title': 'unsupervised domain adaptation with dual-scheme fusion ...',
'paper': 'https://www.ijcai.org/proceedings/2020/0455.pdf',
'topic': 'clinical distribution shift'},
{'title': 'unsupervised cross-modality domain adaptation of ... - ijcai',
'paper': 'https://www.ijcai.org/proceedings/2018/0096.pdf',
'topic': 'clinical distribution shift'},
{'title': 'metric learning in optimal transport for domain adaptation',
'paper': 'https://www.ijcai.org/proceedings/2020/0299.pdf',
'topic': 'clinical distribution shift'},
{'title': 'truly batch apprenticeship learning with deep successor ...',
'paper': 'https://www.ijcai.org/proceedings/2019/0819.pdf',
'topic': 'clinical distribution shift'},
{'title': 'collaborative filtering on ordinal user feedback - ijcai',
'paper': 'https://www.ijcai.org/Proceedings/13/Papers/449.pdf',
'topic': 'clinical distribution shift'},
{'title': 'prototypes and production rulest an approach ...',
'paper': 'https://www.ijcai.org/Proceedings/79-1/Papers/004.pdf',
'topic': 'clinical distribution shift'},
{'title': 'learning sparse interpretable features for nas scoring ...',
'paper': 'https://www.ijcai.org/proceedings/2022/0220.pdf',
'topic': 'clinical distribution shift'},
{'title': 'building text classifiers with minimal supervision - ijcai',
'paper': 'http://www.ijcai.org/Proceedings/11/Papers/208.pdf',
'topic': 'clinical distribution shift'},
{'title': 'reliable and trustworthy machine learning for health using ...',
'paper': 'https://openreview.net/forum?id=hNMOSUxE8o6',
'topic': 'clinical distribution shift'},
{'title': 'a benchmark of in-the-wild distribution shift over time - openreview',
'paper': 'https://openreview.net/pdf?id=F9ENmZABB0',
'topic': 'clinical distribution shift'},
{'title': 'hidden in plain sight: subgroup shifts escape ood detection',
'paper': 'https://openreview.net/forum?id=aZgiUNye2Cz',
'topic': 'clinical distribution shift'},
{'title': 'neurips 2021 workshop distshift - openreview',
'paper': 'https://openreview.net/group?id=NeurIPS.cc/2021/Workshop/DistShift',
'topic': 'clinical distribution shift'},
{'title': 'beds-bench: behavior of ehr-models under distributional ...',
'paper': 'https://openreview.net/pdf?id=IKWYt4w1uDp',
'topic': 'clinical distribution shift'},
{'title': 'continual domain incremental learning for chest x-ray ...',
'paper': 'https://openreview.net/forum?id=tjUEd5OsxuA',
'topic': 'clinical distribution shift'},
{'title': 'a benchmark for text quantification learning under ... - openreview',
'paper': 'https://openreview.net/pdf?id=MndqjaCwQX',
'topic': 'clinical distribution shift'},
{'title': 'metashift:adataset of datasets for evaluat',
'paper': 'https://openreview.net/pdf?id=MTex8qKavoS',
'topic': 'clinical distribution shift'},
{'title': 'medshift: identifying shift data for medical dataset curation',
'paper': 'https://arxiv.org/pdf/2112.13885',
'topic': 'clinical distribution shift'},
{'title': 'test-time adaptation with calibration of medical image ... - arxiv',
'paper': 'http://arxiv.org/abs/2207.00769',
'topic': 'clinical distribution shift'},
{'title': 'arxiv:2207.05796v1 [cs.lg] 12 jul 2022',
'paper': 'https://arxiv.org/pdf/2207.05796',
'topic': 'clinical distribution shift'},
{'title': 'distribution shift in airline customer behavior during covid-19',
'paper': 'https://arxiv.org/abs/2111.14938',
'topic': 'clinical distribution shift'},
{'title': 'understanding behavior of clinical models under domain shifts',
'paper': 'https://arxiv.org/pdf/1809.07806',
'topic': 'clinical distribution shift'},
{'title': 'arxiv:2206.15274v1 [eess.iv] 30 jun 2022',
'paper': 'https://arxiv.org/pdf/2206.15274',
'topic': 'clinical distribution shift'},
{'title': 'arxiv:2207.00769v2 [eess.iv] 9 jul 2022',
'paper': 'https://arxiv.org/pdf/2207.00769',
'topic': 'clinical distribution shift'},
{'title': 'robust and efficient medical imaging with self-supervision',
'paper': 'https://arxiv.org/pdf/2205.09723',
'topic': 'clinical distribution shift'},
{'title': 'feather-light fourier domain adaptation in magnetic resonance imaging',
'paper': 'https://arxiv.org/abs/2208.00474',
'topic': 'clinical distribution shift'},
{'title': 'optimal transport features for morphometric population analysis',
'paper': 'https://arxiv.org/abs/2208.05891',
'topic': 'clinical distribution shift'},
{'title': 'distance-based detection of out-of-distribution silent failures for covid-19 lung lesion segmentation',
'paper': 'https://arxiv.org/abs/2208.03217',
'topic': 'clinical distribution shift'},
{'title': 'task-agnostic continual hippocampus segmentation for smooth population shifts',
'paper': 'https://arxiv.org/abs/2208.03206',
'topic': 'clinical distribution shift'},
{'title': 'continual learning for tumor classification in histopathology images',
'paper': 'https://arxiv.org/abs/2208.03609',
'topic': 'clinical distribution shift'},
{'title': 'generalizable and robust deep learning algorithm for atrial fibrillation diagnosis across ethnicities, ages and sexes',
'paper': 'https://arxiv.org/abs/2207.09667',
'topic': 'clinical distribution shift'},
{'title': 'domain-adaptive 3d medical image synthesis: an efficient unsupervised approach',
'paper': 'https://arxiv.org/abs/2207.00844',
'topic': 'clinical distribution shift'},
{'title': 'risk-sensitive reinforcement learning: iterated cvar and the worst path',
'paper': 'https://arxiv.org/abs/2206.02678',
'topic': 'clinical distribution shift'},
{'title': 'three applications of conformal prediction for rating breast density in mammography',
'paper': 'https://arxiv.org/abs/2206.12008',
'topic': 'clinical distribution shift'},
{'title': 'exposing and addressing the fragility of neural networks in digital pathology',
'paper': 'https://arxiv.org/abs/2206.15274',
'topic': 'clinical distribution shift'},
{'title': 'maxstyle: adversarial style composition for robust medical image segmentation',
'paper': 'https://arxiv.org/abs/2206.01737',
'topic': 'clinical distribution shift'},
{'title': 'test-time adaptation with shape moments for image segmentation',
'paper': 'https://arxiv.org/abs/2205.07983',
'topic': 'clinical distribution shift'},
{'title': 'uncertainty-informed deep learning models enable high-confidence predictions for digital histopathology',
'paper': 'https://arxiv.org/abs/2204.04516',
'topic': 'clinical distribution shift'},
{'title': 'on-the-fly test-time adaptation for medical image segmentation',
'paper': 'https://arxiv.org/abs/2203.05574',
'topic': 'clinical distribution shift'},
{'title': 'chexstray: real-time multi-modal data concordance for drift detection in medical imaging ai',
'paper': 'https://arxiv.org/abs/2202.02833',
'topic': 'clinical distribution shift'},
{'title': 'a field of experts prior for adapting neural networks at test time',
'paper': 'https://arxiv.org/abs/2202.05271',
'topic': 'clinical distribution shift'},
{'title': 'a privacy-preserving unsupervised domain adaptation framework for clinical text analysis',
'paper': 'https://arxiv.org/abs/2201.07317',
'topic': 'clinical distribution shift'},
{'title': 'robust scatterer number density segmentation of ultrasound images',
'paper': 'https://arxiv.org/abs/2201.06143',
'topic': 'clinical distribution shift'},
{'title': 'bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees',
'paper': 'https://arxiv.org/abs/2110.06866',
'topic': 'clinical distribution shift'},
{'title': 'quantifying the reproducibility of graph neural networks using multigraph brain data',
'paper': 'https://arxiv.org/abs/2109.02248',
'topic': 'clinical distribution shift'},
{'title': 'memory-aware curriculum federated learning for breast cancer classification',
'paper': 'https://arxiv.org/abs/2107.02504',
'topic': 'clinical distribution shift'},
{'title': 'anatomy of domain shift impact on u-net layers in mri segmentation',
'paper': 'https://arxiv.org/abs/2107.04914',
'topic': 'clinical distribution shift'},
{'title': 'temporal dependencies in feature importance for time series predictions',
'paper': 'https://arxiv.org/abs/2107.14317',
'topic': 'clinical distribution shift'},
{'title': 'intra- and inter-fraction relative range verification in heavy-ion therapy using filtered interaction vertex imaging',
'paper': 'https://arxiv.org/abs/2106.09090',
'topic': 'clinical distribution shift'},
{'title': 'cross-modality brain tumor segmentation via bidirectional global-to-local unsupervised domain adaptation',
'paper': 'https://arxiv.org/abs/2105.07715',
'topic': 'clinical distribution shift'},
{'title': 'more generalizable models for sepsis detection under covariate shift',
'paper': 'https://arxiv.org/abs/2105.09385',
'topic': 'clinical distribution shift'},
{'title': 'out-of-distribution detection in dermatology using input perturbation and subset scanning',
'paper': 'https://arxiv.org/abs/2105.11160',
'topic': 'clinical distribution shift'},
{'title': 'feddg: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space',
'paper': 'https://arxiv.org/abs/2103.06030',
'topic': 'clinical distribution shift'},
{'title': 'multi-institutional collaborations for improving deep learning-based magnetic resonance image reconstruction using federated learning',
'paper': 'https://arxiv.org/abs/2103.02148',
'topic': 'clinical distribution shift'},
{'title': 'spectral decoupling allows training transferable neural networks in medical imaging',
'paper': 'https://arxiv.org/abs/2103.17171',
'topic': 'clinical distribution shift'},
{'title': 'therapeutics data commons: machine learning datasets and tasks for drug discovery and development',
'paper': 'https://arxiv.org/abs/2102.09548',
'topic': 'clinical distribution shift'},
{'title': 'chexternal: generalization of deep learning models for chest x-ray interpretation to photos of chest x-rays and external clinical settings',
'paper': 'https://arxiv.org/abs/2102.08660',
'topic': 'clinical distribution shift'},
{'title': 'computer-aided abnormality detection in chest radiographs in a clinical setting via domain-adaptation',
'paper': 'https://arxiv.org/abs/2012.10564',
'topic': 'clinical distribution shift'},
{'title': 'deeplesionbrain: towards a broader deep-learning generalization for multiple sclerosis lesion segmentation',
'paper': 'https://arxiv.org/abs/2012.07950',
'topic': 'clinical distribution shift'},
{'title': 'federated semi-supervised learning for covid region segmentation in chest ct using multi-national data from china, italy, japan',
'paper': 'https://arxiv.org/abs/2011.11750',
'topic': 'clinical distribution shift'},
{'title': 'transducer adaptive ultrasound volume reconstruction',
'paper': 'https://arxiv.org/abs/2011.08419',
'topic': 'clinical distribution shift'},
{'title': 'multi-coil mri reconstruction challenge -- assessing brain mri reconstruction models and their generalizability to varying coil configurations',
'paper': 'https://arxiv.org/abs/2011.07952',
'topic': 'clinical distribution shift'},
{'title': 'chasing your long tails: differentially private prediction in health care settings',
'paper': 'https://arxiv.org/abs/2010.06667',
'topic': 'clinical distribution shift'},
{'title': 'contrastive cross-site learning with redesigned net for covid-19 ct classification',
'paper': 'https://arxiv.org/abs/2009.07652',
'topic': 'clinical distribution shift'},
{'title': '"name that manufacturer". relating image acquisition bias with task complexity when training deep learning models: experiments on head ct',
'paper': 'https://arxiv.org/abs/2008.08525',
'topic': 'clinical distribution shift'},
{'title': 'adapting event extractors to medical data: bridging the covariate shift',
'paper': 'https://arxiv.org/abs/2008.09266',
'topic': 'clinical distribution shift'},
{'title': 'speed-of-sound imaging by differential phase contrast with angular compounding',
'paper': 'https://arxiv.org/abs/2007.03156',
'topic': 'clinical distribution shift'},
{'title': 'domain adaptation for ultrasound beamforming',
'paper': 'https://arxiv.org/abs/2007.03096',
'topic': 'clinical distribution shift'},
{'title': 'shape-aware meta-learning for generalizing prostate mri segmentation to unseen domains',
'paper': 'https://arxiv.org/abs/2007.02035',
'topic': 'clinical distribution shift'},
{'title': 'probabilistic self-learning framework for low-dose ct denoising',
'paper': 'https://arxiv.org/abs/2006.00327',
'topic': 'clinical distribution shift'},
{'title': 'mask: a flexible framework to facilitate de-identification of clinical texts',
'paper': 'https://arxiv.org/abs/2005.11687',
'topic': 'clinical distribution shift'},
{'title': 'risk projection for time-to-event outcome leveraging summary statistics with source individual-level data',
'paper': 'https://arxiv.org/abs/2003.01850',
'topic': 'clinical distribution shift'},
{'title': 'balancing confidentiality and sharing of genomic and phenotypic data in a clinical research system',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3233547.3233641',
'topic': 'clinical distribution shift'},
{'title': 'clinical and non-clinical handovers: designing for critical moments',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/2998181.2998333',
'topic': 'clinical distribution shift'},
{'title': 'scaling up hci research: from clinical trials to deployment in the wild.',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3411763.3443437',
'topic': 'clinical distribution shift'},
{'title': 'research on automatic proofreading method of clinical terminology of traditional chinese medicine',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3358695.3360943',
'topic': 'clinical distribution shift'},
{'title': 'huge cohorts, genomics, and clinical data to personalize medicine',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3233547.3233608',
'topic': 'clinical distribution shift'},
{'title': "the objective structured clinical examination (osce) in high-fidelity simulations for assessing nursing students' clinical judgment",
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3345120.3345127',
'topic': 'clinical distribution shift'},
{'title': 'the objective structured clinical examination for assessing nursing student clinical competency in a high-fidelity simulation',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3416797.3416826',
'topic': 'clinical distribution shift'},
{'title': 'cohort-based clinical trial retrieval',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3503516.3503529',
'topic': 'clinical distribution shift'},
{'title': 'text mining in clinical domain: dealing with noise',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/2939672.2939720',
'topic': 'clinical distribution shift'},
{'title': 'aggregating semantic information nuggets for answering clinical queries',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/2851613.2851694',
'topic': 'clinical distribution shift'},
{'title': 'on multi-armed bandit designs for dose-finding clinical trials',
'paper': 'https://dl.acm.org/doi/pdf/10.5555/3546258.3546272',
'topic': 'clinical distribution shift'},
{'title': 'optimizing clinical spatial resources with iot',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3373017.3373047',
'topic': 'clinical distribution shift'},
{'title': 'explaining machine learning models for clinical gait analysis',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3474121',
'topic': 'clinical distribution shift'},
{'title': 'temporal relation extraction in clinical texts: a systematic review',
'paper': 'https://dl.acm.org/doi/pdf/10.1145/3462475',
'topic': 'clinical distribution shift'},
{'title': 'ontology-aware clinical abstractive summarization',