Skip to content

monjurulkarim/YOLOv8_Object_Tracking_TensorRT

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repository contains the code developed by STAR Lab for object detection, tracking, and conflict point estimation on an edge device using live video streams. We utilized OpenCV to capture video from various sources, including cameras, video files, or RTSP streams, and implemented YOLOv8 TensorRT for object detection, along with BYTETrack for object tracking. Key features of this codebase include:

  • Object detection
  • Object tracking
  • Calculation of speed, heading, and distance
  • Conflict point estimation and time-to-collision (TTC) calculation
  • Output transmission via UDP protocol
  • Hosting a web app for visualizing results through a web interface

The edge device used for this project is the NVIDIA JETSON ORIN NANO. Note: Different versions of MUST sensors are sold with various JETSON devices. Please ensure your MUST sensor includes this platform or a more advanced one.

Getting Started

Environment

  • NVIDIA CUDA: 12.2
  • NVIDIA TensorRT >= 8.6.2

Clone repository

Clone repository and submodules

git clone --recurse-submodules https://github.com/monjurulkarim/YOLOv8_Object_Tracking_TensorRT.git

Prepare enviroment

Create new enviroment

conda create -n yolov8_ds python=3.8

Activate enviroment

conda activate yolov8_ds

Prepare models

Go to refs/YOLOv8-TensorRT and install requirements for exporting models

cd refs/YOLOv8-TensorRT
pip3 install -r requirements.txt
pip3 install tensorrt easydict pycuda lap cython_bbox
pip3 install flask

Install python3-libnvinfer

sudo apt-get install python3-libnvinfer

(Optional steps)

The following steps (1-3) are optional because we have already shared our converted weights which are ready to be used. You don't need to convert the weights.

  1. Save the YOLOv8 weights in folder models/to_export

  2. Export YOLOv8 ONNX model

In refs/YOLOv8-TensorRT run the following command to export YOLOv8 ONNX model

python3 export-det.py \
--weights ../../models/to_export/yolov8n.pt \
--iou-thres 0.65 \
--conf-thres 0.25 \
--topk 100 \
--opset 11 \
--sim \
--input-shape 1 3 640 640 \
--device cuda:0

The output .onnx model will be saved in models/to_export folder, move the model to models/onnx folder

mv ../../models/to_export/yolov8n.onnx ../../models/onnx/yolov8n.onnx
  1. Export YOLOv8 TensorRT model

In refs/YOLOv8-TensorRT run the following command to export YOLOv8 TensorRT model

python3 build.py \
--weights ../../models/onnx/yolov8n.onnx \
--iou-thres 0.65 \
--conf-thres 0.25 \
--topk 100 \
--fp16  \
--device cuda:0

The output .engine model will be saved in models/onnx folder, move the model to models/trt folder

mv ../../models/onnx/yolov8n.engine ../../models/engine/yolov8n.engine

Build OpenCV

bash build_opencv.sh

Some code description

srcs/yolov8_bytetrack_starlab.py: This is the main script responsible for running and generating all required results. Users need to specify different parser arguments using flags (e.g., --show, --vid). Running this script starts the web app, allowing users to visualize the results in a browser within the local network.

srcs/template/index.html: This file contains the HTML structure of the web app used for visualization.

srcs/config.py: contains different parameters

models/ : contains the weights

For more details we added additional comments in the code.

Run script

Go to srcs folder

cd srcs

Run YOLOv8 + BYTETrack

python3 yolov8_bytetrack_starlab.py

Running this code will start an web app which can be accessed using any browser. Please make sure to define your devices IP address in the templates/index.html at line

<img src="http://10.19.42.32:5000/video_feed" alt="Live Video Stream">
.


References

Releases

No releases published

Packages

No packages published

Languages

  • Python 91.7%
  • HTML 7.9%
  • Shell 0.4%