Skip to content

Commit dc2f207

Browse files
committed
chore: more usage of database instead of randomDbName
1 parent aa6dd8a commit dc2f207

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

tests/integration/tools/mongodb/create/insertMany.test.ts

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -166,7 +166,7 @@ describeWithMongoDB(
166166
const response = await integration.mcpClient().callTool({
167167
name: "insert-many",
168168
arguments: {
169-
database: integration.randomDbName(),
169+
database: database,
170170
collection: "test",
171171
documents: [{ embedding: "oopsie" }],
172172
},
@@ -237,7 +237,7 @@ describeWithMongoDB(
237237
});
238238

239239
it("generates embeddings for multiple documents with the same field", async () => {
240-
await createVectorSearchIndexAndWait(integration.mongoClient(), integration.randomDbName(), "test", [
240+
await createVectorSearchIndexAndWait(integration.mongoClient(), database, "test", [
241241
{
242242
type: "vector",
243243
path: "titleEmbeddings",
@@ -250,7 +250,7 @@ describeWithMongoDB(
250250
const response = await integration.mcpClient().callTool({
251251
name: "insert-many",
252252
arguments: {
253-
database: integration.randomDbName(),
253+
database: database,
254254
collection: "test",
255255
documents: [
256256
{
@@ -388,7 +388,7 @@ describeWithMongoDB(
388388
});
389389

390390
it("removes redundant nested field from document when embeddings are generated", async () => {
391-
await createVectorSearchIndexAndWait(integration.mongoClient(), integration.randomDbName(), "test", [
391+
await createVectorSearchIndexAndWait(integration.mongoClient(), database, "test", [
392392
{
393393
type: "vector",
394394
path: "title.embeddings",
@@ -422,7 +422,7 @@ describeWithMongoDB(
422422
});
423423

424424
it("returns an error when input field does not have a vector search index", async () => {
425-
await createVectorSearchIndexAndWait(integration.mongoClient(), integration.randomDbName(), "test", [
425+
await createVectorSearchIndexAndWait(integration.mongoClient(), database, "test", [
426426
{
427427
type: "vector",
428428
path: "titleEmbeddings",

0 commit comments

Comments
 (0)