forked from neuralchen/SimSwap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase_options.py
104 lines (91 loc) · 7.13 KB
/
base_options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import argparse
import os
from util import util
import torch
class BaseOptions():
def __init__(self):
self.parser = argparse.ArgumentParser()
self.initialized = False
def initialize(self):
# experiment specifics
self.parser.add_argument('--name', type=str, default='people', help='name of the experiment. It decides where to store samples and models')
self.parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here')
self.parser.add_argument('--model', type=str, default='pix2pixHD', help='which model to use')
self.parser.add_argument('--norm', type=str, default='batch', help='instance normalization or batch normalization')
self.parser.add_argument('--use_dropout', action='store_true', help='use dropout for the generator')
self.parser.add_argument('--data_type', default=32, type=int, choices=[8, 16, 32], help="Supported data type i.e. 8, 16, 32 bit")
self.parser.add_argument('--verbose', action='store_true', default=False, help='toggles verbose')
self.parser.add_argument('--fp16', action='store_true', default=False, help='train with AMP')
self.parser.add_argument('--local_rank', type=int, default=0, help='local rank for distributed training')
self.parser.add_argument('--isTrain', type=bool, default=True, help='local rank for distributed training')
# input/output sizes
self.parser.add_argument('--batchSize', type=int, default=8, help='input batch size')
self.parser.add_argument('--loadSize', type=int, default=1024, help='scale images to this size')
self.parser.add_argument('--fineSize', type=int, default=512, help='then crop to this size')
self.parser.add_argument('--label_nc', type=int, default=0, help='# of input label channels')
self.parser.add_argument('--input_nc', type=int, default=3, help='# of input image channels')
self.parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels')
# for setting inputs
self.parser.add_argument('--dataroot', type=str, default='./datasets/cityscapes/')
self.parser.add_argument('--resize_or_crop', type=str, default='scale_width', help='scaling and cropping of images at load time [resize_and_crop|crop|scale_width|scale_width_and_crop]')
self.parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly')
self.parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data argumentation')
self.parser.add_argument('--nThreads', default=2, type=int, help='# threads for loading data')
self.parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.')
# for displays
self.parser.add_argument('--display_winsize', type=int, default=512, help='display window size')
self.parser.add_argument('--tf_log', action='store_true', help='if specified, use tensorboard logging. Requires tensorflow installed')
# for generator
self.parser.add_argument('--netG', type=str, default='global', help='selects model to use for netG')
self.parser.add_argument('--latent_size', type=int, default=512, help='latent size of Adain layer')
self.parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer')
self.parser.add_argument('--n_downsample_global', type=int, default=3, help='number of downsampling layers in netG')
self.parser.add_argument('--n_blocks_global', type=int, default=6, help='number of residual blocks in the global generator network')
self.parser.add_argument('--n_blocks_local', type=int, default=3, help='number of residual blocks in the local enhancer network')
self.parser.add_argument('--n_local_enhancers', type=int, default=1, help='number of local enhancers to use')
self.parser.add_argument('--niter_fix_global', type=int, default=0, help='number of epochs that we only train the outmost local enhancer')
# for instance-wise features
self.parser.add_argument('--no_instance', action='store_true', help='if specified, do *not* add instance map as input')
self.parser.add_argument('--instance_feat', action='store_true', help='if specified, add encoded instance features as input')
self.parser.add_argument('--label_feat', action='store_true', help='if specified, add encoded label features as input')
self.parser.add_argument('--feat_num', type=int, default=3, help='vector length for encoded features')
self.parser.add_argument('--load_features', action='store_true', help='if specified, load precomputed feature maps')
self.parser.add_argument('--n_downsample_E', type=int, default=4, help='# of downsampling layers in encoder')
self.parser.add_argument('--nef', type=int, default=16, help='# of encoder filters in the first conv layer')
self.parser.add_argument('--n_clusters', type=int, default=10, help='number of clusters for features')
self.parser.add_argument('--image_size', type=int, default=224, help='number of clusters for features')
self.parser.add_argument('--norm_G', type=str, default='spectralspadesyncbatch3x3', help='instance normalization or batch normalization')
self.parser.add_argument('--semantic_nc', type=int, default=3, help='number of clusters for features')
self.initialized = True
def parse(self, save=True):
if not self.initialized:
self.initialize()
self.opt = self.parser.parse_args()
self.opt.isTrain = self.isTrain # train or test
str_ids = self.opt.gpu_ids.split(',')
self.opt.gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
self.opt.gpu_ids.append(id)
# set gpu ids
if len(self.opt.gpu_ids) > 0:
torch.cuda.set_device(self.opt.gpu_ids[0])
args = vars(self.opt)
print('------------ Options -------------')
for k, v in sorted(args.items()):
print('%s: %s' % (str(k), str(v)))
print('-------------- End ----------------')
# save to the disk
if self.opt.isTrain:
expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.name)
util.mkdirs(expr_dir)
if save and not self.opt.continue_train:
file_name = os.path.join(expr_dir, 'opt.txt')
with open(file_name, 'wt') as opt_file:
opt_file.write('------------ Options -------------\n')
for k, v in sorted(args.items()):
opt_file.write('%s: %s\n' % (str(k), str(v)))
opt_file.write('-------------- End ----------------\n')
return self.opt