Skip to content

Latest commit

 

History

History
267 lines (199 loc) · 17.7 KB

README_zh-hans.md

File metadata and controls

267 lines (199 loc) · 17.7 KB



Build GitHub Documentation GitHub release Contributor Covenant DOI

为 Jax、PyTorch 和 TensorFlow 打造的先进的自然语言处理

🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。

🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 model hub 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。

🤗 Transformers 支持三个最热门的深度学习库: Jax, PyTorch 以及 TensorFlow — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。

在线演示

你可以直接在模型页面上测试大多数 model hub 上的模型。 我们也提供了 私有模型托管、模型版本管理以及推理API

这里是一些例子:

Write With Transformer,由抱抱脸团队打造,是一个文本生成的官方 demo。

如果你在寻找由抱抱脸团队提供的定制化支持服务

HuggingFace Expert Acceleration Program

快速上手

我们为快速使用模型提供了 pipeline (流水线)API。流水线聚合了预训练模型和对应的文本预处理。下面是一个快速使用流水线去判断正负面情绪的例子:

>>> from transformers import pipeline

# 使用情绪分析流水线
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]

第二行代码下载并缓存了流水线使用的预训练模型,而第三行代码则在给定的文本上进行了评估。这里的答案“正面” (positive) 具有 99 的置信度。

许多的 NLP 任务都有开箱即用的预训练流水线。比如说,我们可以轻松的从给定文本中抽取问题答案:

>>> from transformers import pipeline

# 使用问答流水线
>>> question_answerer = pipeline('question-answering')
>>> question_answerer({
...     'question': 'What is the name of the repository ?',
...     'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}

除了给出答案,预训练模型还给出了对应的置信度分数、答案在词符化 (tokenized) 后的文本中开始和结束的位置。你可以从这个教程了解更多流水线API支持的任务。

要在你的任务上下载和使用任意预训练模型也很简单,只需三行代码。这里是 PyTorch 版的示例:

>>> from transformers import AutoTokenizer, AutoModel

>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")

>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)

这里是等效的 TensorFlow 代码:

>>> from transformers import AutoTokenizer, TFAutoModel

>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")

>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)

词符化器 (tokenizer) 为所有的预训练模型提供了预处理,并可以直接对单个字符串进行调用(比如上面的例子)或对列表 (list) 调用。它会输出一个你可以在下游代码里使用或直接通过 ** 解包表达式传给模型的词典 (dict)。

模型本身是一个常规的 Pytorch nn.ModuleTensorFlow tf.keras.Model(取决于你的后端),可以常规方式使用。 这个教程解释了如何将这样的模型整合到经典的 PyTorch 或 TensorFlow 训练循环中,或是如何使用我们的 Trainer 训练器)API 来在一个新的数据集上快速微调。

为什么要用 transformers?

  1. 便于使用的先进模型:

    • NLU 和 NLG 上表现优越
    • 对教学和实践友好且低门槛
    • 高级抽象,只需了解三个类
    • 对所有模型统一的API
  2. 更低计算开销,更少的碳排放:

    • 研究人员可以分享已训练的模型而非每次从头开始训练
    • 工程师可以减少计算用时和生产环境开销
    • 数十种模型架构、两千多个预训练模型、100多种语言支持
  3. 对于模型生命周期的每一个部分都面面俱到:

    • 训练先进的模型,只需 3 行代码
    • 模型在不同深度学习框架间任意转移,随你心意
    • 为训练、评估和生产选择最适合的框架,衔接无缝
  4. 为你的需求轻松定制专属模型和用例:

    • 我们为每种模型架构提供了多个用例来复现原论文结果
    • 模型内部结构保持透明一致
    • 模型文件可单独使用,方便魔改和快速实验

什么情况下我不该用 transformers?

  • 本库并不是模块化的神经网络工具箱。模型文件中的代码特意呈若璞玉,未经额外抽象封装,以便研究人员快速迭代魔改而不致溺于抽象和文件跳转之中。
  • Trainer API 并非兼容任何模型,只为本库之模型优化。若是在寻找适用于通用机器学习的训练循环实现,请另觅他库。
  • 尽管我们已尽力而为,examples 目录中的脚本也仅为用例而已。对于你的特定问题,它们并不一定开箱即用,可能需要改几行代码以适之。

安装

使用 pip

这个仓库已在 Python 3.8+、Flax 0.4.1+、PyTorch 1.11+ 和 TensorFlow 2.6+ 下经过测试。

你可以在虚拟环境中安装 🤗 Transformers。如果你还不熟悉 Python 的虚拟环境,请阅此用户说明

首先,用你打算使用的版本的 Python 创建一个虚拟环境并激活。

然后,你需要安装 Flax、PyTorch 或 TensorFlow 其中之一。关于在你使用的平台上安装这些框架,请参阅 TensorFlow 安装页, PyTorch 安装页Flax 安装页

当这些后端之一安装成功后, 🤗 Transformers 可依此安装:

pip install transformers

如果你想要试试用例或者想在正式发布前使用最新的开发中代码,你得从源代码安装

使用 conda

🤗 Transformers 可以通过 conda 依此安装:

conda install conda-forge::transformers

笔记:huggingface 渠道安装 transformers 已被废弃。

要通过 conda 安装 Flax、PyTorch 或 TensorFlow 其中之一,请参阅它们各自安装页的说明。

模型架构

🤗 Transformers 支持的所有的模型检查点用户组织上传,均与 huggingface.co model hub 无缝整合。

目前的检查点数量:

🤗 Transformers 目前支持如下的架构: 模型概述请阅这里.

要检查某个模型是否已有 Flax、PyTorch 或 TensorFlow 的实现,或其是否在 🤗 Tokenizers 库中有对应词符化器(tokenizer),敬请参阅此表

这些实现均已于多个数据集测试(请参看用例脚本)并应于原版实现表现相当。你可以在用例文档的此节中了解表现的细节。

了解更多

章节 描述
文档 完整的 API 文档和教程
任务总结 🤗 Transformers 支持的任务
预处理教程 使用 Tokenizer 来为模型准备数据
训练和微调 在 PyTorch/TensorFlow 的训练循环或 Trainer API 中使用 🤗 Transformers 提供的模型
快速上手:微调和用例脚本 为各种任务提供的用例脚本
模型分享和上传 和社区上传和分享你微调的模型
迁移 pytorch-transformerspytorch-pretrained-bert 迁移到 🤗 Transformers

引用

我们已将此库的论文正式发表,如果你使用了 🤗 Transformers 库,请引用:

@inproceedings{wolf-etal-2020-transformers,
    title = "Transformers: State-of-the-Art Natural Language Processing",
    author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
    month = oct,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
    pages = "38--45"
}