forked from facebookresearch/mbrl-lib
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpets.py
138 lines (119 loc) · 4.27 KB
/
pets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
from typing import Optional
import gym
import numpy as np
import omegaconf
import torch
import mbrl.constants
import mbrl.models
import mbrl.planning
import mbrl.types
import mbrl.util
import mbrl.util.common
import mbrl.util.math
EVAL_LOG_FORMAT = mbrl.constants.EVAL_LOG_FORMAT
def train(
env: gym.Env,
termination_fn: mbrl.types.TermFnType,
reward_fn: mbrl.types.RewardFnType,
cfg: omegaconf.DictConfig,
silent: bool = False,
work_dir: Optional[str] = None,
) -> np.float32:
# ------------------- Initialization -------------------
debug_mode = cfg.get("debug_mode", False)
obs_shape = env.observation_space.shape
act_shape = env.action_space.shape
rng = np.random.default_rng(seed=cfg.seed)
torch_generator = torch.Generator(device=cfg.device)
if cfg.seed is not None:
torch_generator.manual_seed(cfg.seed)
work_dir = work_dir or os.getcwd()
print(f"Results will be saved at {work_dir}.")
if silent:
logger = None
else:
logger = mbrl.util.Logger(work_dir)
logger.register_group(
mbrl.constants.RESULTS_LOG_NAME, EVAL_LOG_FORMAT, color="green"
)
# -------- Create and populate initial env dataset --------
dynamics_model = mbrl.util.common.create_one_dim_tr_model(cfg, obs_shape, act_shape)
use_double_dtype = cfg.algorithm.get("normalize_double_precision", False)
dtype = np.double if use_double_dtype else np.float32
replay_buffer = mbrl.util.common.create_replay_buffer(
cfg,
obs_shape,
act_shape,
rng=rng,
obs_type=dtype,
action_type=dtype,
reward_type=dtype,
)
mbrl.util.common.rollout_agent_trajectories(
env,
cfg.algorithm.initial_exploration_steps,
mbrl.planning.RandomAgent(env),
{},
replay_buffer=replay_buffer,
)
replay_buffer.save(work_dir)
# ---------------------------------------------------------
# ---------- Create model environment and agent -----------
model_env = mbrl.models.ModelEnv(
env, dynamics_model, termination_fn, reward_fn, generator=torch_generator
)
model_trainer = mbrl.models.ModelTrainer(
dynamics_model,
optim_lr=cfg.overrides.model_lr,
weight_decay=cfg.overrides.model_wd,
logger=logger,
)
agent = mbrl.planning.create_trajectory_optim_agent_for_model(
model_env, cfg.algorithm.agent, num_particles=cfg.algorithm.num_particles
)
# ---------------------------------------------------------
# --------------------- Training Loop ---------------------
env_steps = 0
current_trial = 0
max_total_reward = -np.inf
while env_steps < cfg.overrides.num_steps:
obs = env.reset()
agent.reset()
done = False
total_reward = 0.0
steps_trial = 0
while not done:
# --------------- Model Training -----------------
if env_steps % cfg.algorithm.freq_train_model == 0:
mbrl.util.common.train_model_and_save_model_and_data(
dynamics_model,
model_trainer,
cfg.overrides,
replay_buffer,
work_dir=work_dir,
)
# --- Doing env step using the agent and adding to model dataset ---
next_obs, reward, done, _ = mbrl.util.common.step_env_and_add_to_buffer(
env, obs, agent, {}, replay_buffer
)
obs = next_obs
total_reward += reward
steps_trial += 1
env_steps += 1
if debug_mode:
print(f"Step {env_steps}: Reward {reward:.3f}.")
if logger is not None:
logger.log_data(
mbrl.constants.RESULTS_LOG_NAME,
{"env_step": env_steps, "episode_reward": total_reward},
)
current_trial += 1
if debug_mode:
print(f"Trial: {current_trial }, reward: {total_reward}.")
max_total_reward = max(max_total_reward, total_reward)
return np.float32(max_total_reward)