forked from junyanz/CycleGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.lua
266 lines (209 loc) · 6.22 KB
/
util.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
--
-- code derived from https://github.com/soumith/dcgan.torch
--
local util = {}
require 'torch'
function util.BiasZero(net)
net:apply(function(m) if torch.type(m):find('Convolution') then m.bias:zero() end end)
end
function util.checkEqual(A, B, name)
local dif = (A:float()-B:float()):abs():mean()
print(name, dif)
end
function util.containsValue(table, value)
for k, v in pairs(table) do
if v == value then return true end
end
return false
end
function util.CheckTensor(A, name)
print(name, A:min(), A:max(), A:mean())
end
function util.normalize(img)
-- rescale image to 0 .. 1
local min = img:min()
local max = img:max()
img = torch.FloatTensor(img:size()):copy(img)
img:add(-min):mul(1/(max-min))
return img
end
function util.normalizeBatch(batch)
for i = 1, batch:size(1) do
batch[i] = util.normalize(batch[i]:squeeze())
end
return batch
end
function util.basename_batch(batch)
for i = 1, #batch do
batch[i] = paths.basename(batch[i])
end
return batch
end
-- default preprocessing
--
-- Preprocesses an image before passing it to a net
-- Converts from RGB to BGR and rescales from [0,1] to [-1,1]
function util.preprocess(img)
-- RGB to BGR
if img:size(1) == 3 then
local perm = torch.LongTensor{3, 2, 1}
img = img:index(1, perm)
end
-- [0,1] to [-1,1]
img = img:mul(2):add(-1)
-- check that input is in expected range
assert(img:max()<=1,"badly scaled inputs")
assert(img:min()>=-1,"badly scaled inputs")
return img
end
-- Undo the above preprocessing.
function util.deprocess(img)
-- BGR to RGB
if img:size(1) == 3 then
local perm = torch.LongTensor{3, 2, 1}
img = img:index(1, perm)
end
-- [-1,1] to [0,1]
img = img:add(1):div(2)
return img
end
function util.preprocess_batch(batch)
for i = 1, batch:size(1) do
batch[i] = util.preprocess(batch[i]:squeeze())
end
return batch
end
function util.print_tensor(name, x)
print(name, x:size(), x:min(), x:mean(), x:max())
end
function util.deprocess_batch(batch)
for i = 1, batch:size(1) do
batch[i] = util.deprocess(batch[i]:squeeze())
end
return batch
end
function util.scaleBatch(batch,s1,s2)
-- print('s1', s1)
-- print('s2', s2)
local scaled_batch = torch.Tensor(batch:size(1),batch:size(2),s1,s2)
for i = 1, batch:size(1) do
scaled_batch[i] = image.scale(batch[i],s1,s2):squeeze()
end
return scaled_batch
end
function util.toTrivialBatch(input)
return input:reshape(1,input:size(1),input:size(2),input:size(3))
end
function util.fromTrivialBatch(input)
return input[1]
end
-- input is between -1 and 1
function util.jitter(input)
local noise = torch.rand(input:size())/256.0
input:add(1.0):mul(0.5*255.0/256.0):add(noise):add(-0.5):mul(2.0)
--local scaled = (input+1.0)*0.5
--local jittered = scaled*255.0/256.0 + torch.rand(input:size())/256.0
--local scaled_back = (jittered-0.5)*2.0
--return scaled_back
end
function util.scaleImage(input, loadSize)
-- replicate bw images to 3 channels
if input:size(1)==1 then
input = torch.repeatTensor(input,3,1,1)
end
input = image.scale(input, loadSize, loadSize)
return input
end
function util.getAspectRatio(path)
local input = image.load(path, 3, 'float')
local ar = input:size(3)/input:size(2)
return ar
end
function util.loadImage(path, loadSize, nc)
local input = image.load(path, 3, 'float')
input= util.preprocess(util.scaleImage(input, loadSize))
if nc == 1 then
input = input[{{1}, {}, {}}]
end
return input
end
function file_exists(filename)
local f = io.open(filename,"r")
if f ~= nil then io.close(f) return true else return false end
end
-- TO DO: loading code is rather hacky; clean it up and make sure it works on all types of nets / cpu/gpu configurations
function load_helper(filename, opt)
fileExists = file_exists(filename)
if not fileExists then
print('model not found! ' .. filename)
return nil
end
print(('loading previously trained model (%s)'):format(filename))
if opt.norm == 'instance' then
print('use InstanceNormalization')
require 'util.InstanceNormalization'
end
if opt.cudnn>0 then
require 'cudnn'
end
local net = torch.load(filename)
if opt.gpu > 0 then
require 'cunn'
net:cuda()
-- calling cuda on cudnn saved nngraphs doesn't change all variables to cuda, so do it below
if net.forwardnodes then
for i=1,#net.forwardnodes do
if net.forwardnodes[i].data.module then
net.forwardnodes[i].data.module:cuda()
end
end
end
else
net:float()
end
net:apply(function(m) if m.weight then
m.gradWeight = m.weight:clone():zero();
m.gradBias = m.bias:clone():zero(); end end)
return net
end
function util.load_model(name, opt)
-- if opt['lambda_'.. name] > 0.0 then
-- print('not loading model '.. opt.checkpoints_dir .. opt.name ..
-- 'latest_net_' .. name .. '.t7' .. ' because opt.lambda is not greater than zero')
return load_helper(paths.concat(opt.checkpoints_dir, opt.name,
'latest_net_' .. name .. '.t7'), opt)
-- end
end
function util.load_test_model(name, opt)
return load_helper(paths.concat(opt.checkpoints_dir, opt.name,
opt.which_epoch .. '_net_' .. name .. '.t7'), opt)
end
-- load dataset from the file system
-- |name|: name of the dataset. It's currently either 'A' or 'B'
-- function util.load_dataset(name, nc, opt, nc)
-- local tensortype = torch.getdefaulttensortype()
-- torch.setdefaulttensortype('torch.FloatTensor')
--
-- local new_opt = options.clone(opt)
-- new_opt.manualSeed = torch.random(1, 10000) -- fix seed
-- new_opt.nc = nc
-- torch.manualSeed(new_opt.manualSeed)
-- local data_loader = paths.dofile('../data/data.lua')
-- new_opt.phase = new_opt.phase .. name
-- local data = data_loader.new(new_opt.nThreads, new_opt)
-- print("Dataset Size " .. name .. ": ", data:size())
--
-- torch.setdefaulttensortype(tensortype)
-- return data
-- end
function util.cudnn(net)
require 'cudnn'
require 'util/cudnn_convert_custom'
return cudnn_convert_custom(net, cudnn)
end
function util.save_model(net, net_name, weight)
if weight > 0.0 then
torch.save(paths.concat(opt.checkpoints_dir, opt.name, net_name), net:clearState())
end
end
return util