forked from junyanz/CycleGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontent_gan_model.lua
201 lines (175 loc) · 7.19 KB
/
content_gan_model.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
local class = require 'class'
require 'models.base_model'
require 'models.architectures'
require 'util.image_pool'
util = paths.dofile('../util/util.lua')
content = paths.dofile('../util/content_loss.lua')
ContentGANModel = class('ContentGANModel', 'BaseModel')
function ContentGANModel:__init(conf)
BaseModel.__init(self, conf)
conf = conf or {}
end
function ContentGANModel:model_name()
return 'ContentGANModel'
end
function ContentGANModel:InitializeStates()
local optimState = {learningRate=opt.lr, beta1=opt.beta1,}
return optimState
end
-- Defines models and networks
function ContentGANModel:Initialize(opt)
if opt.test == 0 then
self.fakePool = ImagePool(opt.pool_size)
end
-- define tensors
self.real_A = torch.Tensor(opt.batchSize, opt.input_nc, opt.fineSize, opt.fineSize)
self.fake_B = torch.Tensor(opt.batchSize, opt.output_nc, opt.fineSize, opt.fineSize)
self.real_B = self.fake_B:clone() --torch.Tensor(opt.batchSize, opt.output_nc, opt.fineSize, opt.fineSize)
-- load/define models
self.criterionGAN = nn.MSECriterion()
self.criterionContent = nn.AbsCriterion()
self.contentFunc = content.defineContent(opt.content_loss, opt.layer_name)
self.netG, self.netD = nil, nil
if opt.continue_train == 1 then
if opt.which_epoch then -- which_epoch option exists in test mode
self.netG = util.load_test_model('G_A', opt)
self.netD = util.load_test_model('D_A', opt)
else
self.netG = util.load_model('G_A', opt)
self.netD = util.load_model('D_A', opt)
end
else
self.netG = defineG(opt.input_nc, opt.output_nc, opt.ngf, opt.which_model_netG)
print('netG...', self.netG)
self.netD = defineD(opt.output_nc, opt.ndf, opt.which_model_netD, opt.n_layers_D, false)
print('netD...', self.netD)
end
-- define real/fake labels
netD_output_size = self.netD:forward(self.real_A):size()
self.fake_label = torch.Tensor(netD_output_size):fill(0.0)
self.real_label = torch.Tensor(netD_output_size):fill(1.0) -- no soft smoothing
self.optimStateD = self:InitializeStates()
self.optimStateG = self:InitializeStates()
self:RefreshParameters()
print('---------- # Learnable Parameters --------------')
print(('G = %d'):format(self.parametersG:size(1)))
print(('D = %d'):format(self.parametersD:size(1)))
print('------------------------------------------------')
-- os.exit()
end
-- Runs the forward pass of the network and
-- saves the result to member variables of the class
function ContentGANModel:Forward(input, opt)
if opt.which_direction == 'BtoA' then
local temp = input.real_A
input.real_A = input.real_B
input.real_B = temp
end
self.real_A:copy(input.real_A)
self.real_B:copy(input.real_B)
self.fake_B = self.netG:forward(self.real_A):clone()
-- output = {self.fake_B}
output = {}
-- if opt.test == 1 then
-- end
return output
end
-- create closure to evaluate f(X) and df/dX of discriminator
function ContentGANModel:fDx_basic(x, gradParams, netD, netG,
real_target, fake_target, opt)
util.BiasZero(netD)
util.BiasZero(netG)
gradParams:zero()
local errD_real, errD_rec, errD_fake, errD = 0, 0, 0, 0
-- Real log(D_A(B))
local output = netD:forward(real_target)
errD_real = self.criterionGAN:forward(output, self.real_label)
df_do = self.criterionGAN:backward(output, self.real_label)
netD:backward(real_target, df_do)
-- Fake + log(1 - D_A(G_A(A)))
output = netD:forward(fake_target)
errD_fake = self.criterionGAN:forward(output, self.fake_label)
df_do = self.criterionGAN:backward(output, self.fake_label)
netD:backward(fake_target, df_do)
errD = (errD_real + errD_fake) / 2.0
-- print('errD', errD
return errD, gradParams
end
function ContentGANModel:fDx(x, opt)
fake_B = self.fakePool:Query(self.fake_B)
self.errD, gradParams = self:fDx_basic(x, self.gradparametersD, self.netD, self.netG,
self.real_B, fake_B, opt)
return self.errD, gradParams
end
function ContentGANModel:fGx_basic(x, netG_source, netD_source, real_source, real_target, fake_target,
gradParametersG_source, opt)
util.BiasZero(netD_source)
util.BiasZero(netG_source)
gradParametersG_source:zero()
-- GAN loss
-- local df_d_GAN = torch.zeros(fake_target:size())
-- local errGAN = 0
-- local errRec = 0
--- Domain GAN loss: D_A(G_A(A))
local output = netD_source.output -- [hack] forward was already executed in fDx, so save computation netD_source:forward(fake_B) ---
local errGAN = self.criterionGAN:forward(output, self.real_label)
local df_do = self.criterionGAN:backward(output, self.real_label)
local df_d_GAN = netD_source:updateGradInput(fake_target, df_do) ---:narrow(2,fake_AB:size(2)-output_nc+1, output_nc)
-- content loss
-- print('content_loss', opt.content_loss)
-- function content.lossUpdate(criterionContent, real_source, fake_target, contentFunc, loss_type, weight)
local errContent, df_d_content = content.lossUpdate(self.criterionContent, real_source, fake_target, self.contentFunc, opt.content_loss, opt.lambda)
netG_source:forward(real_source)
netG_source:backward(real_source, df_d_GAN + df_d_content)
-- print('errD', errGAN)
return gradParametersG_source, errGAN, errContent
end
function ContentGANModel:fGx(x, opt)
self.gradparametersG, self.errG, self.errCont =
self:fGx_basic(x, self.netG, self.netD,
self.real_A, self.real_B, self.fake_B,
self.gradparametersG, opt)
return self.errG, self.gradparametersG
end
function ContentGANModel:OptimizeParameters(opt)
local fDx = function(x) return self:fDx(x, opt) end
local fGx = function(x) return self:fGx(x, opt) end
optim.adam(fDx, self.parametersD, self.optimStateD)
optim.adam(fGx, self.parametersG, self.optimStateG)
end
function ContentGANModel:RefreshParameters()
self.parametersD, self.gradparametersD = nil, nil -- nil them to avoid spiking memory
self.parametersG, self.gradparametersG = nil, nil
-- define parameters of optimization
self.parametersG, self.gradparametersG = self.netG:getParameters()
self.parametersD, self.gradparametersD = self.netD:getParameters()
end
function ContentGANModel:Save(prefix, opt)
util.save_model(self.netG, prefix .. '_net_G_A.t7', 1.0)
util.save_model(self.netD, prefix .. '_net_D_A.t7', 1.0)
end
function ContentGANModel:GetCurrentErrorDescription()
description = ('G: %.4f D: %.4f Content: %.4f'):format(self.errG and self.errG or -1,
self.errD and self.errD or -1,
self.errCont and self.errCont or -1)
return description
end
function ContentGANModel:GetCurrentErrors()
local errors = {errG=self.errG and self.errG or -1, errD=self.errD and self.errD or -1,
errCont=self.errCont and self.errCont or -1}
return errors
end
-- returns a string that describes the display plot configuration
function ContentGANModel:DisplayPlot(opt)
return 'errG,errD,errCont'
end
function ContentGANModel:GetCurrentVisuals(opt, size)
if not size then
size = opt.display_winsize
end
local visuals = {}
table.insert(visuals, {img=self.real_A, label='real_A'})
table.insert(visuals, {img=self.fake_B, label='fake_B'})
table.insert(visuals, {img=self.real_B, label='real_B'})
return visuals
end