-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparallel.py
46 lines (33 loc) · 1001 Bytes
/
parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import ray
ray.init()
# ray.init("ray://127.0.0.1:10001")
import time
database = [
"Learning", "Ray", "With", "Kubernetes", "Can", "Be", "Fun", "And", "Exciting"
]
def retrieve(item):
time.sleep(.5)
return item, database[item]
def print_runtime(input_data, start_time):
print(f'Runtime: {time.time() - start_time:.2f} seconds, data:')
print(*input_data, sep="\n")
def sequential():
print("### Running Sequentially ###")
start = time.time()
data = [retrieve(item) for item in range(len(database))]
print_runtime(data, start)
print("### Done Running Sequentially ###")
@ray.remote
def retrieve_task(item):
return retrieve(item)
def parallel():
print("### Running Parallelly ###")
start = time.time()
object_references = [
retrieve_task.remote(item) for item in range(len(database))
]
data = ray.get(object_references)
print_runtime(data, start)
print("### Done Running Parallelly ###")
sequential()
parallel()