Qwen2-Audio的最佳实践可以查看: #1653
pip install 'ms-swift[llm]' -U
# Experimental environment: A10, 3090, V100...
# 21GB GPU memory
CUDA_VISIBLE_DEVICES=0 swift infer --model_type qwen-audio-chat
输出: (支持传入本地路径或URL)
"""
<<< 你是谁?
我是来自达摩院的大规模语言模型,我叫通义千问。
--------------------------------------------------
<<< <audio>http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/music.wav</audio>这是首什么样的音乐
这是一首风格是Pop的音乐。
--------------------------------------------------
<<< <audio>http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/weather.wav</audio>这段语音说了什么
这段语音中说了中文:"今天天气真好呀"。
--------------------------------------------------
<<< 这段语音是男生还是女生
根据音色判断,这段语音是男性。
"""
单样本推理
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from swift.llm import (
get_model_tokenizer, get_template, inference, ModelType,
get_default_template_type, inference_stream
)
from swift.utils import seed_everything
import torch
model_type = ModelType.qwen_audio_chat
template_type = get_default_template_type(model_type)
print(f'template_type: {template_type}')
model, tokenizer = get_model_tokenizer(model_type, torch.float16,
model_kwargs={'device_map': 'auto'})
model.generation_config.max_new_tokens = 256
template = get_template(template_type, tokenizer)
seed_everything(42)
query = '<audio>http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/weather.wav</audio>这段语音说了什么'
response, history = inference(model, template, query)
print(f'query: {query}')
print(f'response: {response}')
# 流式
query = '这段语音是男生还是女生'
gen = inference_stream(model, template, query, history)
print_idx = 0
print(f'query: {query}\nresponse: ', end='')
for response, history in gen:
delta = response[print_idx:]
print(delta, end='', flush=True)
print_idx = len(response)
print()
print(f'history: {history}')
"""
query: <audio>http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/weather.wav</audio>这段语音说了什么
response: 这段语音说了中文:"今天天气真好呀"。
query: 这段语音是男生还是女生
response: 根据音色判断,这段语音是男性。
history: [['<audio>http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/weather.wav</audio>这段语音说了什么', '这段语音说了中文:"今天天气真好呀"。'], ['这段语音是男生还是女生', '根据音色判断,这段语音是男性。']]
"""
多模态大模型微调通常使用自定义数据集进行微调. 这里展示可直接运行的demo:
LoRA微调:
# Experimental environment: A10, 3090, V100...
# 22GB GPU memory
CUDA_VISIBLE_DEVICES=0 swift sft \
--model_type qwen-audio-chat \
--dataset aishell1-mini-zh \
全参数微调:
# MP
# Experimental environment: 2 * A100
# 2 * 50 GPU memory
CUDA_VISIBLE_DEVICES=0,1 swift sft \
--model_type qwen-audio-chat \
--dataset aishell1-mini-zh \
--sft_type full \
# ZeRO2
# Experimental environment: 4 * A100
# 4 * 80 GPU memory
NPROC_PER_NODE=4 CUDA_VISIBLE_DEVICES=0,1,2,3 swift sft \
--model_type qwen-audio-chat \
--dataset aishell1-mini-zh \
--sft_type full \
--use_flash_attn true \
--deepspeed default-zero2
自定义数据集支持json, jsonl样式, 以下是自定义数据集的例子:
(支持多轮对话, 支持每轮对话含多段语音或不含语音, 支持传入本地路径或URL)
[
{"conversations": [
{"from": "user", "value": "<audio>audio_path</audio>11111"},
{"from": "assistant", "value": "22222"}
]},
{"conversations": [
{"from": "user", "value": "<audio>audio_path</audio><audio>audio_path2</audio><audio>audio_path3</audio>aaaaa"},
{"from": "assistant", "value": "bbbbb"},
{"from": "user", "value": "<audio>audio_path</audio>ccccc"},
{"from": "assistant", "value": "ddddd"}
]},
{"conversations": [
{"from": "user", "value": "AAAAA"},
{"from": "assistant", "value": "BBBBB"},
{"from": "user", "value": "CCCCC"},
{"from": "assistant", "value": "DDDDD"}
]}
]
直接推理:
CUDA_VISIBLE_DEVICES=0 swift infer \
--ckpt_dir output/qwen-audio-chat/vx-xxx/checkpoint-xxx \
--load_dataset_config true \
merge-lora并推理:
CUDA_VISIBLE_DEVICES=0 swift export \
--ckpt_dir output/qwen-audio-chat/vx-xxx/checkpoint-xxx \
--merge_lora true
CUDA_VISIBLE_DEVICES=0 swift infer \
--ckpt_dir output/qwen-audio-chat/vx-xxx/checkpoint-xxx-merged \
--load_dataset_config true