We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Paraformer语音识别-中文-通用-16k-离线-large-长音频版(https://modelscope.cn/models/iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch),使用20小时语料进行微调,在微调服务器上完成量化导出和测试,测试效果很好,但是将量化后的权重文件,替换docker中对应的量化模型下的权重文件重启后,输出效果不如测试效果,请问是不是需要将依赖的vad、punc、lm模型也是用相同语料微调
将模型字典配置文件全部同步到docker对应模型下,替换了相同文件,同时将docker中的长音频版量化模型,导入到服务器上使用微调量化后的权重文件替换,效果很好
pip
The text was updated successfully, but these errors were encountered:
以下逐个测试: 1、torch 解码 2、导出fp32 onnx解码,funasr-onnx 3、导出int8 onnx,funasr-onnx 4、docker部署,替换原来的模型,进行测试
Sorry, something went wrong.
No branches or pull requests
What is your question?
Paraformer语音识别-中文-通用-16k-离线-large-长音频版(https://modelscope.cn/models/iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch),使用20小时语料进行微调,在微调服务器上完成量化导出和测试,测试效果很好,但是将量化后的权重文件,替换docker中对应的量化模型下的权重文件重启后,输出效果不如测试效果,请问是不是需要将依赖的vad、punc、lm模型也是用相同语料微调
Code
What have you tried?
将模型字典配置文件全部同步到docker对应模型下,替换了相同文件,同时将docker中的长音频版量化模型,导入到服务器上使用微调量化后的权重文件替换,效果很好
What's your environment?
pip
, source):pipThe text was updated successfully, but these errors were encountered: