We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Notice: In order to resolve issues more efficiently, please raise issue following the template. (注意:为了更加高效率解决您遇到的问题,请按照模板提问,补充细节)
使用2pass模式时,虽然online速度快,但是识别效果相对于offline较差,因为使用offline的结果,但是offline的结果耗时较长,尝试使用这个API “OrtSessionOptionsAppendExecutionProvider_CUDA” 来使用CUDA,计算的确是在GPU上进行的,但是速度并没有什么太大变化。测试音频时一个不间断说话,长约10.84秒的音频,耗时需要1.5s以上。
请问有什么方法能加速offline模型的onnx的推理?
也尝试过离线的镜像,因为离线镜像是所有结果一起返回,不符合使用场景。据我的认知,离线镜像若使用GPU,则使用的libtorch;如果不使用GPU,则用的是onnxruntime,两者的确在速度上有明显的差别,将batch_size设置为1,libtorch解码之前提到的音频,比onnx要快约800ms
pip
The text was updated successfully, but these errors were encountered:
On going
Sorry, something went wrong.
No branches or pull requests
Notice: In order to resolve issues more efficiently, please raise issue following the template.
(注意:为了更加高效率解决您遇到的问题,请按照模板提问,补充细节)
❓ Questions and Help
使用2pass模式时,虽然online速度快,但是识别效果相对于offline较差,因为使用offline的结果,但是offline的结果耗时较长,尝试使用这个API “OrtSessionOptionsAppendExecutionProvider_CUDA” 来使用CUDA,计算的确是在GPU上进行的,但是速度并没有什么太大变化。测试音频时一个不间断说话,长约10.84秒的音频,耗时需要1.5s以上。
请问有什么方法能加速offline模型的onnx的推理?
也尝试过离线的镜像,因为离线镜像是所有结果一起返回,不符合使用场景。据我的认知,离线镜像若使用GPU,则使用的libtorch;如果不使用GPU,则用的是onnxruntime,两者的确在速度上有明显的差别,将batch_size设置为1,libtorch解码之前提到的音频,比onnx要快约800ms
Before asking:
What is your question?
Code
What have you tried?
What's your environment?
pip
, source):The text was updated successfully, but these errors were encountered: