-
Notifications
You must be signed in to change notification settings - Fork 803
/
base.py
621 lines (514 loc) · 20.3 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import namedtuple
from dataclasses import dataclass
from functools import partial
from omegaconf import MISSING, II
from typing import Optional, Callable
from funasr.models.emotion2vec.fairseq_modules import compute_mask_indices
from funasr.models.emotion2vec.fairseq_modules import GradMultiply
from funasr.models.emotion2vec.fairseq_modules import index_put
logger = logging.getLogger(__name__)
MaskSeed = namedtuple("MaskSeed", ["seed", "update", "ids"])
MaskInfo = namedtuple("MaskInfo", ["x_unmasked", "mask", "ids_restore", "ids_keep"])
class ModalitySpecificEncoder(nn.Module):
def __init__(
self,
modality_cfg,
embed_dim: int,
local_encoder: nn.Module,
project_features: nn.Module,
fixed_positional_encoder: Optional[nn.Module],
relative_positional_encoder: Optional[nn.Module],
context_encoder: nn.Module,
decoder: nn.Module,
get_alibi_bias: Optional[Callable[[int, int, str, str], torch.Tensor]],
):
super().__init__()
self.modality_cfg = modality_cfg
self.local_encoder = local_encoder
self.project_features = project_features
self.fixed_positional_encoder = fixed_positional_encoder
self.relative_positional_encoder = relative_positional_encoder
self.context_encoder = context_encoder
self.decoder = decoder
self.get_alibi_bias = get_alibi_bias if modality_cfg.use_alibi_encoder else None
self.local_grad_mult = self.modality_cfg.local_grad_mult
self.extra_tokens = None
if modality_cfg.num_extra_tokens > 0:
self.extra_tokens = nn.Parameter(
torch.zeros(1, modality_cfg.num_extra_tokens, embed_dim)
)
if not modality_cfg.init_extra_token_zero:
nn.init.normal_(self.extra_tokens)
elif self.extra_tokens.size(1) > 1:
nn.init.normal_(self.extra_tokens[:, 1:])
self.alibi_scale = None
if self.get_alibi_bias is not None:
self.alibi_scale = nn.Parameter(
torch.full(
(
(
(modality_cfg.prenet_depth + modality_cfg.model_depth)
if modality_cfg.learned_alibi_scale_per_layer
else 1
),
1,
(
self.modality_cfg.num_alibi_heads
if modality_cfg.learned_alibi_scale_per_head
else 1
),
1,
1,
),
modality_cfg.alibi_scale,
dtype=torch.float,
),
requires_grad=modality_cfg.learned_alibi_scale,
)
if modality_cfg.learned_alibi and self.get_alibi_bias is not None:
assert modality_cfg.alibi_max_pos is not None
alibi_bias = self.get_alibi_bias(
batch_size=1,
time_steps=modality_cfg.alibi_max_pos,
heads=modality_cfg.num_alibi_heads,
scale=1.0,
dtype=torch.float,
device="cpu",
)
self.alibi_bias = nn.Parameter(alibi_bias)
self.get_alibi_bias = partial(_learned_alibi_bias, alibi_bias=self.alibi_bias)
def upgrade_state_dict_named(self, state_dict, name):
k = f"{name}.alibi_scale"
if k in state_dict and state_dict[k].dim() == 4:
state_dict[k] = state_dict[k].unsqueeze(0)
return state_dict
def convert_padding_mask(self, x, padding_mask):
return padding_mask
def decoder_input(self, x, mask_info: MaskInfo):
inp_drop = self.modality_cfg.decoder.input_dropout
if inp_drop > 0:
x = F.dropout(x, inp_drop, training=self.training, inplace=True)
num_extra = self.modality_cfg.num_extra_tokens
if mask_info is not None:
num_masked = mask_info.ids_restore.shape[1] - x.shape[1] + num_extra
mask_tokens = x.new_empty(
x.size(0),
num_masked,
x.size(-1),
).normal_(0, self.modality_cfg.mask_noise_std)
x_ = torch.cat([x[:, num_extra:], mask_tokens], dim=1)
x = torch.gather(x_, dim=1, index=mask_info.ids_restore)
if self.modality_cfg.decoder.add_positions_masked:
assert self.fixed_positional_encoder is not None
pos = self.fixed_positional_encoder(x, None)
x = x + (pos * mask_info.mask.unsqueeze(-1))
else:
x = x[:, num_extra:]
if self.modality_cfg.decoder.add_positions_all:
assert self.fixed_positional_encoder is not None
x = x + self.fixed_positional_encoder(x, None)
return x, mask_info
def local_features(self, features):
if self.local_grad_mult > 0:
if self.local_grad_mult == 1.0:
x = self.local_encoder(features)
else:
x = GradMultiply.apply(self.local_encoder(features), self.local_grad_mult)
else:
with torch.no_grad():
x = self.local_encoder(features)
x = self.project_features(x)
return x
def contextualized_features(
self,
x,
padding_mask,
mask,
remove_masked,
clone_batch: int = 1,
mask_seeds: Optional[torch.Tensor] = None,
precomputed_mask=None,
):
if padding_mask is not None:
padding_mask = self.convert_padding_mask(x, padding_mask)
local_features = x
if mask and clone_batch == 1:
local_features = local_features.clone()
orig_B, orig_T, _ = x.shape
pre_mask_B = orig_B
mask_info = None
x_pos = None
if self.fixed_positional_encoder is not None:
x = x + self.fixed_positional_encoder(x, padding_mask)
if mask:
if clone_batch > 1:
x = x.repeat_interleave(clone_batch, 0)
if mask_seeds is not None:
clone_hash = [
int(hash((mask_seeds.seed, ind)) % 1e10) for ind in range(clone_batch - 1)
]
clone_hash = torch.tensor([0] + clone_hash).long().view(1, -1)
id = mask_seeds.ids
id = id.repeat_interleave(clone_batch, 0)
id = id.view(-1, clone_batch) + clone_hash.to(id)
id = id.view(-1)
mask_seeds = MaskSeed(seed=mask_seeds.seed, update=mask_seeds.update, ids=id)
if padding_mask is not None:
padding_mask = padding_mask.repeat_interleave(clone_batch, 0)
x, mask_info = self.compute_mask(
x,
padding_mask,
mask_seed=mask_seeds,
apply=self.relative_positional_encoder is not None or not remove_masked,
precomputed_mask=precomputed_mask,
)
if self.relative_positional_encoder is not None:
x_pos = self.relative_positional_encoder(x)
masked_padding_mask = padding_mask
if mask and remove_masked:
x = mask_info.x_unmasked
if x_pos is not None:
x = x + gather_unmasked(x_pos, mask_info)
if padding_mask is not None and padding_mask.any():
masked_padding_mask = gather_unmasked_mask(padding_mask, mask_info)
if not masked_padding_mask.any():
masked_padding_mask = None
else:
masked_padding_mask = None
elif x_pos is not None:
x = x + x_pos
alibi_bias = None
alibi_scale = self.alibi_scale
if self.get_alibi_bias is not None:
alibi_bias = self.get_alibi_bias(
batch_size=pre_mask_B,
time_steps=orig_T,
heads=self.modality_cfg.num_alibi_heads,
dtype=torch.float32,
device=x.device,
)
if alibi_scale is not None:
alibi_scale = alibi_scale.clamp_min(0)
if alibi_scale.size(0) == 1:
alibi_bias = alibi_bias * alibi_scale.squeeze(0).type_as(alibi_bias)
alibi_scale = None
if clone_batch > 1:
alibi_bias = alibi_bias.repeat_interleave(clone_batch, 0)
if mask_info is not None and remove_masked:
alibi_bias = masked_alibi(alibi_bias, mask_info)
if self.extra_tokens is not None:
num = self.extra_tokens.size(1)
x = torch.cat([self.extra_tokens.expand(x.size(0), -1, -1), x], dim=1)
if masked_padding_mask is not None:
# B x T
masked_padding_mask = F.pad(masked_padding_mask, (num, 0))
if alibi_bias is not None:
# B x H x T x T
alibi_bias = F.pad(alibi_bias, (num, 0, num, 0))
x = self.context_encoder(
x,
masked_padding_mask,
alibi_bias,
alibi_scale[: self.modality_cfg.prenet_depth] if alibi_scale is not None else None,
)
return {
"x": x,
"local_features": local_features,
"padding_mask": masked_padding_mask,
"alibi_bias": alibi_bias,
"alibi_scale": (
alibi_scale[self.modality_cfg.prenet_depth :]
if alibi_scale is not None and alibi_scale.size(0) > 1
else alibi_scale
),
"encoder_mask": mask_info,
}
def forward(
self,
features,
padding_mask,
mask: bool,
remove_masked: bool,
clone_batch: int = 1,
mask_seeds: Optional[torch.Tensor] = None,
precomputed_mask=None,
):
x = self.local_features(features)
return self.contextualized_features(
x,
padding_mask,
mask,
remove_masked,
clone_batch,
mask_seeds,
precomputed_mask,
)
def reset_parameters(self):
pass
def compute_mask(
self,
x,
padding_mask,
mask_seed: Optional[MaskSeed],
apply,
precomputed_mask,
):
if precomputed_mask is not None:
mask = precomputed_mask
mask_info = self.make_maskinfo(x, mask)
else:
B, T, C = x.shape
cfg = self.modality_cfg
mask_prob = cfg.mask_prob
if (
cfg.mask_prob_min is not None
and cfg.mask_prob_min >= 0
and cfg.mask_prob_min < mask_prob
):
mask_prob = np.random.uniform(cfg.mask_prob_min, mask_prob)
if mask_prob > 0:
if cfg.mask_length == 1:
mask_info = random_masking(x, mask_prob, mask_seed)
else:
if self.modality_cfg.inverse_mask:
mask_prob = 1 - mask_prob
mask = compute_mask_indices(
(B, T),
padding_mask,
mask_prob,
cfg.mask_length,
min_masks=1,
require_same_masks=True,
mask_dropout=cfg.mask_dropout,
add_masks=cfg.add_masks,
seed=mask_seed.seed if mask_seed is not None else None,
epoch=mask_seed.update if mask_seed is not None else None,
indices=mask_seed.ids if mask_seed is not None else None,
)
mask = torch.from_numpy(mask).to(device=x.device)
if self.modality_cfg.inverse_mask:
mask = 1 - mask
mask_info = self.make_maskinfo(x, mask)
else:
mask_info = None
if apply:
x = self.apply_mask(x, mask_info)
return x, mask_info
def make_maskinfo(self, x, mask, shape=None):
if shape is None:
B, T, D = x.shape
else:
B, T, D = shape
mask = mask.to(torch.uint8)
ids_shuffle = mask.argsort(dim=1)
ids_restore = ids_shuffle.argsort(dim=1).unsqueeze(-1).expand(-1, -1, D)
len_keep = T - mask[0].sum()
if self.modality_cfg.keep_masked_pct > 0:
len_keep += round((T - int(len_keep)) * self.modality_cfg.keep_masked_pct)
ids_keep = ids_shuffle[:, :len_keep]
if shape is not None:
x_unmasked = None
else:
ids_keep = ids_keep.unsqueeze(-1).expand(-1, -1, D)
x_unmasked = torch.gather(x, dim=1, index=ids_keep)
mask_info = MaskInfo(
x_unmasked=x_unmasked,
mask=mask,
ids_restore=ids_restore,
ids_keep=ids_keep,
)
return mask_info
def apply_mask(self, x, mask_info):
cfg = self.modality_cfg
B, T, C = x.shape
if mask_info is not None:
mask = mask_info.mask
if cfg.encoder_zero_mask:
x = x * (1 - mask.type_as(x).unsqueeze(-1))
else:
num_masks = mask.sum().item()
masks = x.new_empty(num_masks, x.size(-1)).normal_(0, cfg.mask_noise_std)
x = index_put(x, mask, masks)
if cfg.mask_channel_prob > 0:
mask_channel = compute_mask_indices(
(B, C),
None,
cfg.mask_channel_prob,
cfg.mask_channel_length,
)
mask_channel = (
torch.from_numpy(mask_channel).to(x.device).unsqueeze(1).expand(-1, T, -1)
)
x = index_put(x, mask_channel, 0)
return x
def remove_pretraining_modules(self, keep_decoder=False):
if not keep_decoder:
self.decoder = None
def get_annealed_rate(start, end, curr_step, total_steps):
if curr_step >= total_steps:
return end
r = end - start
pct_remaining = 1 - curr_step / total_steps
return end - r * pct_remaining
# adapted from MAE
def random_masking(x, mask_ratio, mask_seed: Optional[MaskSeed]):
N, L, D = x.shape # batch, length, dim
len_keep = int(L * (1 - mask_ratio))
generator = None
if mask_seed is not None:
seed = int(hash((mask_seed.seed, mask_seed.update, mask_seed.ids.sum().item())) % 1e6)
generator = torch.Generator(device=x.device)
generator.manual_seed(seed)
noise = torch.rand(N, L, generator=generator, device=x.device) # noise in [0, 1]
# sort noise for each sample
ids_shuffle = noise.argsort(dim=1) # ascend: small is keep, large is remove
ids_restore = ids_shuffle.argsort(dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
ids_keep = ids_keep.unsqueeze(-1).expand(-1, -1, D)
x_unmasked = torch.gather(x, dim=1, index=ids_keep)
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], dtype=x.dtype, device=x.device)
mask[:, :len_keep] = 0
# unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
ids_restore = ids_restore.unsqueeze(-1).expand(-1, -1, D)
return MaskInfo(x_unmasked=x_unmasked, mask=mask, ids_restore=ids_restore, ids_keep=ids_keep)
def gather_unmasked(x: torch.Tensor, mask_info: MaskInfo) -> torch.Tensor:
return torch.gather(
x,
dim=1,
index=mask_info.ids_keep,
)
def gather_unmasked_mask(x: torch.Tensor, mask_info: MaskInfo) -> torch.Tensor:
return torch.gather(
x,
dim=1,
index=mask_info.ids_keep[..., 0], # ignore the feature dimension
)
def get_alibi(
max_positions: int,
attention_heads: int,
dims: int = 1,
distance: str = "manhattan",
):
def get_slopes(n):
def get_slopes_power_of_2(n):
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
ratio = start
return [start * ratio**i for i in range(n)]
# In the paper, we only train models that have 2^a heads for some
# a. This function has some good properties that only occur when
# the input is a power of 2. To maintain that even when the number
# of heads is not a power of 2, we use this workaround.
if math.log2(n).is_integer():
return get_slopes_power_of_2(n)
else:
closest_power_of_2 = 2 ** math.floor(math.log2(n))
return (
get_slopes_power_of_2(closest_power_of_2)
+ get_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
)
maxpos = max_positions
attn_heads = attention_heads
slopes = torch.Tensor(get_slopes(attn_heads))
if dims == 1:
# prepare alibi position linear bias. Note that wav2vec2 is non
# autoregressive model so we want a symmetric mask with 0 on the
# diagonal and other wise linear decreasing valuees
pos_bias = (
torch.abs(torch.arange(maxpos).unsqueeze(0) - torch.arange(maxpos).unsqueeze(1)) * -1
)
elif dims == 2:
if distance == "manhattan":
df = lambda x1, y1, x2, y2: abs(x1 - x2) + abs(y1 - y2)
elif distance == "euclidean":
df = lambda x1, y1, x2, y2: math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
n = math.sqrt(max_positions)
assert n.is_integer(), n
n = int(n)
pos_bias = torch.zeros((max_positions, max_positions))
for i in range(n):
for j in range(n):
for k in range(n):
for l in range(n):
new_x = i * n + j
new_y = k * n + l
pos_bias[new_x, new_y] = -df(i, j, k, l)
else:
raise Exception(f"unsupported number of alibi dims: {dims}")
alibi_bias = slopes.unsqueeze(1).unsqueeze(1) * pos_bias.unsqueeze(0).expand(attn_heads, -1, -1)
return alibi_bias
def get_alibi_bias(
alibi_biases,
batch_size,
time_steps,
heads,
dtype,
device,
dims=1,
distance="manhattan",
):
cache_key = f"{dims}_{heads}_{distance}"
buffered = alibi_biases.get(cache_key, None)
target_size = heads * batch_size
if (
buffered is None
or buffered.size(0) < target_size
or buffered.size(1) < time_steps
or buffered.dtype != dtype
or buffered.device != device
):
bt = max(time_steps, buffered.size(1) if buffered is not None else 0)
bn = max(target_size, buffered.size(0) if buffered is not None else 0) // heads
buffered = (
get_alibi(bt, heads, dims=dims, distance=distance)
.to(dtype=dtype, device=device)
.repeat(bn, 1, 1)
)
alibi_biases[cache_key] = buffered
b = buffered[:target_size, :time_steps, :time_steps]
b = b.view(batch_size, heads, time_steps, time_steps)
return b
def _learned_alibi_bias(
alibi_bias,
batch_size,
time_steps,
heads,
scale,
dtype,
device,
):
assert alibi_bias.size(1) == heads, alibi_bias.shape
assert alibi_bias.dtype == dtype, alibi_bias.dtype
assert alibi_bias.device == device, alibi_bias.device
if alibi_bias.size(-1) < time_steps:
psz = math.ceil((time_steps - alibi_bias.size(-1)) / 2)
alibi_bias = F.pad(alibi_bias, (psz, psz, psz, psz), mode="replicate")
alibi_bias = alibi_bias.expand(batch_size, -1, -1, -1) * scale
return alibi_bias[..., :time_steps, :time_steps]
def masked_alibi(alibi_bias, mask_info):
H = alibi_bias.size(1)
orig_bias = alibi_bias
index = mask_info.ids_keep.unsqueeze(1)[..., 0].unsqueeze(-1)
alibi_bias = torch.gather(
orig_bias,
dim=-2,
index=index.expand(-1, H, -1, mask_info.ids_restore.size(1)),
)
alibi_bias = torch.gather(
alibi_bias,
dim=-1,
index=index.transpose(-1, -2).expand(-1, H, alibi_bias.size(-2), -1),
)
return alibi_bias