@@ -189,21 +189,21 @@ def forward(self, im_data, gt_boxes=None, gt_classes=None, dontcare=None, size_i
189
189
cat_1_3 = torch .cat ([conv1s_reorg , conv3 ], 1 )
190
190
conv4 = self .conv4 (cat_1_3 )
191
191
conv5 = self .conv5 (conv4 ) # batch_size, out_channels, h, w
192
- conv5 = self .global_average_pool (conv5 )
192
+ global_average_pool = self .global_average_pool (conv5 )
193
193
194
194
# for detection
195
195
# bsize, c, h, w -> bsize, h, w, c -> bsize, h x w, num_anchors, 5+num_classes
196
- bsize , _ , h , w = conv5 .size ()
196
+ bsize , _ , h , w = global_average_pool .size ()
197
197
# assert bsize == 1, 'detection only support one image per batch'
198
- conv5_reshaped = conv5 .permute (0 , 2 , 3 , 1 ).contiguous ().view (bsize , - 1 , cfg .num_anchors , cfg .num_classes + 5 )
198
+ global_average_pool_reshaped = global_average_pool .permute (0 , 2 , 3 , 1 ).contiguous ().view (bsize , - 1 , cfg .num_anchors , cfg .num_classes + 5 )
199
199
200
200
# tx, ty, tw, th, to -> sig(tx), sig(ty), exp(tw), exp(th), sig(to)
201
- xy_pred = F .sigmoid (conv5_reshaped [:, :, :, 0 :2 ])
202
- wh_pred = torch .exp (conv5_reshaped [:, :, :, 2 :4 ])
201
+ xy_pred = F .sigmoid (global_average_pool_reshaped [:, :, :, 0 :2 ])
202
+ wh_pred = torch .exp (global_average_pool_reshaped [:, :, :, 2 :4 ])
203
203
bbox_pred = torch .cat ([xy_pred , wh_pred ], 3 )
204
- iou_pred = F .sigmoid (conv5_reshaped [:, :, :, 4 :5 ])
204
+ iou_pred = F .sigmoid (global_average_pool_reshaped [:, :, :, 4 :5 ])
205
205
206
- score_pred = conv5_reshaped [:, :, :, 5 :].contiguous ()
206
+ score_pred = global_average_pool_reshaped [:, :, :, 5 :].contiguous ()
207
207
prob_pred = F .softmax (score_pred .view (- 1 , score_pred .size ()[- 1 ])).view_as (score_pred )
208
208
209
209
# for training
0 commit comments