Skip to content

Repository to reproduce "Link Polarity Prediction from Sparse and Noisy Labels via Multiscale Social Balance" accepted at CIKM2024

Notifications You must be signed in to change notification settings

mminici/SGNNfromSparseAndNoisyLabels

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 

Repository files navigation

Use this colab notebook to reproduce our results

If you use this code or part of it, please cite the original reference:

Minici, M., Cinus, F., Bonchi, F., & Manco, G. (2024, October). Link Polarity Prediction from Sparse and Noisy Labels. In Proceedings of the 33rd ACM International Conference on Information & Knowledge Management. doi: https://doi.org/10.1145/3511808.3557253


Data Preprocessing

  • Run python pre-processing-unsupervised-experiment.py for each dataset (bitcoin_alpha, bitcoin_otc, wiki, slashdot) and noise percentage (0.0, 0.1, 0.2). Alternatively, you can use the preprocessed files we will soon update on Zenodo.

Running scripts

Each dataset has a different set of hyperparameters, change their values accordingly in the run_SDGNN_lrw_MicroMesoSB.py.

  • bitcoin_alpha:
    • unlabeled_perc = [None, ]
    • init_eps_one = True
  • bitcoin_otc:
    • unlabeled_perc = [0.8, ]
    • init_eps_one = True
  • wiki:
    • unlabeled_perc = [None, ]
    • init_eps_one = True
  • slashdot:
    • unlabeled_perc = [0.5, ]
    • init_eps_one = False

We ensure other researchers can reproduce our results using this ready-to-use colab notebook.

For the sake of experimentation velocity, we will soon update our preprocessed files on a Zenodo node. However, you can preprocess the files by yourself using the pre-processing-unsupervised-experiment.py script (present in the Colab environment).

About

Repository to reproduce "Link Polarity Prediction from Sparse and Noisy Labels via Multiscale Social Balance" accepted at CIKM2024

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages