Closed
Description
library(survival)
library(mlr)
#> Loading required package: ParamHelpers
data(veteran)
set.seed(24601)
vet.task <- makeSurvTask(id = "VET", data = veteran, target = c("time", "status"))
vet.task <- createDummyFeatures(vet.task)
cox.lrn <- makeLearner(cl="surv.coxph", id = "coxph", predict.type="response")
fval =generateFilterValuesData(vet.task,
method = list("E-mean", c("univariate.model.score", "randomForestSRC_importance")),
more.args=list("univariate.model.score"=list(perf.learner=cox.lrn), "randomForestSRC_importance"=list(ntree=100))
)
fval = fval$data
fval
#> name type method value
#> 1: prior numeric randomForestSRC_importance -0.0034653967
#> 2: trt numeric randomForestSRC_importance -0.0002310563
#> 3: diagtime numeric randomForestSRC_importance 0.0007997677
#> 4: age numeric randomForestSRC_importance 0.0020504755
#> 5: celltype.large numeric randomForestSRC_importance 0.0084291392
#> 6: celltype.adeno numeric randomForestSRC_importance 0.0088886429
#> 7: celltype.squamous numeric randomForestSRC_importance 0.0111077710
#> 8: celltype.smallcell numeric randomForestSRC_importance 0.0137876876
#> 9: karno numeric randomForestSRC_importance 0.1285040870
#> 10: prior numeric univariate.model.score 0.4085623679
#> 11: trt numeric univariate.model.score 0.4474747475
#> 12: age numeric univariate.model.score 0.4882100750
#> 13: celltype.large numeric univariate.model.score 0.5371655104
#> 14: diagtime numeric univariate.model.score 0.5669050051
#> 15: celltype.squamous numeric univariate.model.score 0.5669882101
#> 16: celltype.adeno numeric univariate.model.score 0.5731948566
#> 17: celltype.smallcell numeric univariate.model.score 0.5972083749
#> 18: karno numeric univariate.model.score 0.6612903226
#> 19: age numeric E-mean 6.5000000000
#> 20: celltype.adeno numeric E-mean 7.0000000000
#> 21: celltype.large numeric E-mean 2.0000000000
#> 22: celltype.smallcell numeric E-mean 7.0000000000
#> 23: celltype.squamous numeric E-mean 7.0000000000
#> 24: diagtime numeric E-mean 3.5000000000
#> 25: karno numeric E-mean 1.0000000000
#> 26: prior numeric E-mean 6.0000000000
#> 27: trt numeric E-mean 5.0000000000
#> name type method value
threshold = 0.5
nselect = sum(fval[["value"]] >= threshold, na.rm = TRUE)
nselect
#> [1] 15