-
Notifications
You must be signed in to change notification settings - Fork 58
/
reference.bqn
520 lines (457 loc) · 18.3 KB
/
reference.bqn
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
# This file gives reference implementations of BQN primitives assuming
# limited initial functionality. Implementations are designed to be
# simple and not fast.
# In some cases an operation is defined with limited functionality at
# first and later expanded. For convenience, rather than renaming these
# limited versions, every primitive use refers to the most recent
# definition in source code, as if redefinitions shadowed previous
# primitive definitions.
#⌜
# LAYER 0: Assumed functionality
# Arithmetic on the implementation-defined number system
# LIMITED to the stated cases and atomic arguments.
+ # Add
- # Negate Subtract
× # Multiply
÷ # Reciprocal Divide
⋆ # Exponential Power
⌊ # Floor
= # Equals
≤ # Less Than or Equal to
# Other basic functionality that we need to assume
Type # 0 if 𝕩 is an array, 1 if a number, >1 otherwise
! # 𝕩 is 0 or 1; throw an error if it's 0
≢ # LIMITED to monadic case
⥊ # LIMITED to array 𝕩 and (×´𝕨)≡≢𝕩
⊑ # LIMITED to natural number 𝕨 and list 𝕩
_amend # {𝕨˙⌾(𝕗⊸⊑)𝕩} for list 𝕩
↕ # LIMITED to number 𝕩
Identity # Left or right identity of function 𝕏
⁼ # Inverse of function 𝔽
Fill # Enclosed fill value for 𝕩
HasFill # Whether 𝕩 has a fill value
#⌜
# LAYER 1: Foundational operators and functions
# Combinators
◶ ← {𝕨((𝕨𝔽𝕩)⊑𝕘){𝔽}𝕩} # LIMITED to number left operand result
˙ ← {𝕩⋄𝕗}
⊘ ← {𝔽𝕩;𝕨𝔾𝕩}
⊢ ← {𝕩}
⊣ ← {𝕩;𝕨}
˜ ← {𝕩𝔽𝕨⊣𝕩}
∘ ← {𝔽𝕨𝔾𝕩}
○ ← {(𝔾𝕨)𝔽𝔾𝕩}
⊸ ← {(𝔽𝕨⊣𝕩)𝔾𝕩}
⟜ ← {(𝕨⊣𝕩)𝔽𝔾𝕩}
⍟ ← {𝔾◶⊢‿𝔽} # LIMITED to boolean right operand result
IsArray ← 0=Type
Int ← (1=Type)◶⟨0,⌊⊸=⟩ # Is an integer (including ¯∞ and ∞)
Nat ← (1=Type)◶⟨0,0⊸≤×⌊⊸=⟩ # Is a natural number
≢ ↩ IsArray◶⟨⟩‿≢ # LIMITED to monadic case
⋈ ← {⟨𝕩⟩;⟨𝕨,𝕩⟩}
# LIMITED to numeric arguments for arithmetic cases
√ ← ⋆⟜(÷2) ⊘ (⋆⟜÷˜) # Higher precision allowed; see spec
∧ ← ×
∨ ← +-×
¬ ← 1+-
| ← ×⟜× ⊘ {𝕩-𝕨×⌊𝕩÷𝕨} # Higher precision allowed; see spec
< ← {⟨⟩⥊⟨𝕩⟩} ⊘ (¬≤˜)
> ← (¬≤)
≥ ← !∘0 ⊘ (≤˜)
≠ ← Length ⊘ (¬=)
= ↩ Rank ⊘ =
× ↩ 0⊸(<->) ⊘ ×
# ⌊⌈ defined after pervasion below
¨ ← _eachm # LIMITED to monadic case and array 𝕩
´ ← _fold
Rank ← 0⊑≢∘≢
Length ← (0<Rank)◶⟨1,0⊑≢⟩
_eachm←{
# Set 𝕨⊑⥊𝕩 to 𝔽𝕨⊑⥊𝕩 for each index 𝕨
(≢𝕩) ⥊ 0 𝔽{𝕨 (+⟜1 𝕊 𝔽∘⊑ 𝕨_amend ⊢)⍟(<⟜≠) 𝕩} ⥊𝕩
}
_fold←{
! 1==𝕩
l←≠v←𝕩 ⋄ F←𝔽
# If 𝕨 isn't given, start with the last cell of 𝕩
r←𝕨 (0<l)◶{𝕩⋄Identity f}‿{l-↩1⋄l⊑𝕩}⊘⊣ 𝕩
# Apply r↩(𝕨⊑v)F r for 𝕨 from l to 0
l {𝕨 -⟜1⊸(⊣𝕊⊑⟜v⊸F)⍟(>⟜0) 𝕩} r
}
# Re-add identities for needed redefined functions
identity { f‿i←𝕨 ⋄ f˙⊸=◶𝕩‿i }´↩ ⟨ ×‿1, ∨‿0, ∧‿1 ⟩
#⌜
# LAYER 2: Pervasion
# _pervasive should be applied to all arithmetic as an IMPLICIT STEP:
# +-×÷⋆√⌊⌈|¬ and dyadic ∧∨<>≠=≤≥
# Join: elements 0…≠𝕨 come from 𝕨 and the rest from 𝕩
∾ ← {k←≠𝕨⋄k⊸≤◶⟨⊑⟜𝕨,-⟜k⊑𝕩˜⟩¨↕k+≠𝕩} # LIMITED to two list arguments
ToArray ← IsArray◶<‿⊢
_table←{
m←≠a←⥊𝕨 ⋄ n←≠b←⥊𝕩 ⋄ F←𝔽 ⋄ i←0
# 𝕩 is the result index; maintain index i in 𝕨 and compute 𝕩-n×i in 𝕩
(𝕨∾○≢𝕩)⥊{i+↩𝕩=n×i+1⋄(i⊑a)F(𝕩-n×i)⊑b}¨↕m×n
}
_eachd←{
_e←{ # 𝕨 has rank less than or equal to 𝕩
k←≠p←≢𝕨 ⋄ q←≢𝕩
! ∧´(⊑⟜p=⊑⟜q)¨↕k # p≡k↑q
l←×´(q⊑˜k⊸+)¨↕q≠⊸-k # ×´k↓q, size of a cell in 𝕩 (pairs with a unit)
a←⥊𝕨 ⋄ b←⥊𝕩
# In the inner function, 𝕨 indexes into a and (l×𝕨)+𝕩 into b
q⥊ (≠a) (⊑⟜a 𝔽 l⊸×⊸+⊑b˙)_table○↕ l
}
>○=◶⟨𝔽_e,𝔽˜_e˜⟩
}
⌜ ← {(𝔽_eachm)⊘(𝔽_table)○ToArray}
¨ ↩ {(𝔽_eachm)⊘(𝔽_eachd)○ToArray}
# Pervasion recurses whenever any argument is an array
_pervasive←{
⊢⊘∨○IsArray◶⟨𝔽, 𝔽{𝕨𝔽_pervasive𝕩}¨⟩
}
# The modifier _pervasive applies to all arithmetic.
# For practicality when testing, basic functions are made pervasive
# instead, which works for all arithmetic except dyadic ⌊⌈.
⌊ ↩ ⌊ ⊘ ({(𝕨>𝕩)⊑𝕨‿𝕩}_pervasive)
⌈ ← -∘⌊∘- ⊘ ({(𝕨<𝕩)⊑𝕨‿𝕩}_pervasive)
#⌜
# LAYER 3: Remove other limits
# After this all implementations are full except ∾; ↕ is monadic only
Deshape ← IsArray◶{⟨𝕩⟩}‿⥊
Reshape←{
! 1≥=𝕨
s←Deshape 𝕨
sp←+´p←¬Nat⌜s # Number of non-numeric elements
! 1≥sp # At most one allowed
n←≠d←Deshape 𝕩
l←sp◶(×´)‿{
# Handle computed shapes
lp←×´p 1⍟⊣¨𝕩 # Product of numeric elements
! 0<lp # Would imply division by zero
I←+´↕∘≠⊸× # Index from boolean list with a single 1 (⊑/)
e←⟨∘,⌊,⌽,↑⟩=p I⊸⊑s # Pick element and compare with possibilities
! +´e # Must be one of ∘⌊⌽↑
t←I e # Which one is it?
a←(2⌊t)◶⟨{!Nat𝕩⋄𝕩},⌊,⌈⟩n÷lp # Compute and round length
s↩p a⍟⊣¨s # Insert it back into the shape
# For element ↑, append fill elements to d if necessary
{d∾↩(Fill d)⌜↕𝕩-n⋄n↩𝕩}⍟(n⊸<)⍟(3=t)lp×a
} s
# Size of 𝕩 is n, so n|𝕨 is a cyclic index into d. Final size is l.
s ⥊ (↕l) {!0<n⋄⊑⟜𝕩¨n|𝕨}⍟(l≠n) d
}
Range←{
I ← {!Nat𝕩 ⋄ ↕𝕩} # 𝕩 is a number
M ← {!1==𝕩 ⋄ (<⟨⟩)⋈⊸∾⌜´I¨𝕩} # 𝕩 is a list
IsArray◶I‿M 𝕩
}
Pick1←{
! 1==𝕨 # Index must be a list
! 𝕨=○≠s←≢𝕩 # with length equal to rank of 𝕩
! ∧´Int¨𝕨 # consisting of integers
! ∧´𝕨(≥⟜-∧<)s # in the range [-l,l) where l is an axis length
𝕨 +↩ s×𝕨<0 # Wrap negatives
i ← 0(⊑⟜𝕨+⊑⟜s×⊢)´-↕⊸¬≠𝕨 # Compute index with a reverse fold
i ⊑ ⥊𝕩
}
# Recurse if depth is greater than 1
Pickd ← {∨´⥊IsArray¨𝕨}◶Pick1‿{Pickd⟜𝕩¨𝕨}
Pick ← IsArray◶⥊‿⊢⊸Pickd
First ← {!0<≠𝕩 ⋄ 0⊑𝕩} Deshape
# Two arrays match if all the following conditions hold:
match←{¬∘(0⊑𝕨)◶(1⊑𝕨)‿𝕩}´⟨
⟨≠○IsArray , 0⟩ # They are both arrays, or both not arrays
⟨¬IsArray∘⊢, =⟩ # They are equal atoms, OR
⟨≠○= , 0⟩ # They have equal ranks
⟨∨´≠○≢ , 0⟩ # And equal length along each axis
{∧´⥊𝕨Match¨𝕩} # And matching elements
⟩
Depth ← IsArray◶0‿{1+0⌈´Depth¨⥊𝕩}
⊑ ↩ First ⊘ Pick
⥊ ↩ Deshape ⊘ Reshape
↕ ↩ Range
◶ ↩ {𝕨((𝕨𝔽𝕩)⊑𝕘){𝔽}𝕩} # Same definition with updated Pick
≡ ← Depth ⊘ Match
≢ ↩ ≢ ⊘ (¬Match)
#⌜
# LAYER 4: Operators
> ↩ Merge⍟IsArray ⊘ >
≍ ← >∘⋈
⎉ ← _rankOp_
⚇ ← _depthOp_
⍟ ↩ _repeat_
˘ ← {𝔽⎉¯1}
˝ ← _insert
` ← _scan
Drop1 ← {⊑⟜𝕩¨𝕨+↕𝕨-˜≠𝕩} # Drop from list
Cell ← Drop1⟜≢ # (-𝕨)-cell shape of array 𝕩
# Merge: if empty, append fill shape to array shape to reshape fill
# Otherwise, run all element ravels together
Merge←(0<≠∘⥊)◶((∾○≢⥊⊢)⟜Fill⍟HasFill)‿{
c←≢⊑𝕩
! ∧´⥊(c≡≢)¨𝕩 # Shapes must match
𝕩⊑⟜ToArray˜⌜↕c # Shape is (≢𝕩)∾c, with corresponding axis structure
}
# Check if ranks/depths are valid: list of one to three integers
# Return ⥊𝕩
ValidateRanks←{
! 1≥=𝕩
𝕩⥊↩
! (1⊸≤∧≤⟜3)≠𝕩
! ∧´Int¨𝕩
𝕩
}
# Extract the appropriate ranks/depths for a call
# Use negative indexing and wrap with |
_ranks ← {⟨2⟩⊘⟨1,0⟩ ((⊣-1+|)˜⟜≠⊑¨<∘⊢) ValidateRanks∘𝔽}
_depthOp_←{
n ← 𝕨 𝔾_ranks 𝕩
neg←0>n ⋄ F←𝔽
_d←{
R←(𝕗+neg)_d # Increment
rec ← 2⥊(neg∧𝕗≥0)∨(0⌈𝕗)≥𝕨⋈○≡𝕩 # Whether to recurse into 𝕨⊣𝕩 and 𝕩
𝕨 rec◶(⟨R¨,R⟜(𝕩˙)¨∘⊣⟩≍⟨(𝕨{𝕏;𝕨˙⊸𝕏}r)¨∘⊢,F⟩) 𝕩
}
𝕨 n _d 𝕩
}
_rankOp_←{
k←𝕨(⋈○= 0⊸≤◶⟨⌊⟜-,0⌈-⟩¨ 𝔾_ranks)𝕩 # Effective frame length
# Enclose (-𝕨)-cells of 𝕩, that is, <⎉((=𝕩)-𝕨) 𝕩
EncK←{
f←⊑⟜(≢𝕩)¨↕𝕨 # 𝕨↑≢𝕩
c←×´s←𝕨Cell𝕩
f⥊⊑⟜(⥊𝕩)¨∘((s⥊↕c)+c×⊢)¨↕×´f
}
# Use <⊢ if k=0 (required to handle atoms correctly), and <⌜⊢ if k==𝕩
Enc←(>⟜0×1+≥⟜=)◶⟨<⊢,EncK,<⌜⊢⟩
> ((⊑k)Enc𝕨) 𝔽¨ ((1-˜≠)⊸⊑k)Enc𝕩
}
_insert←{
! 1≤=𝕩
𝕨 𝔽´ <˘𝕩
}
_scan←{
! IsArray 𝕩
! 1≤=𝕩
c←×´cs←1 Cell 𝕩
! (cs≡≢)𝕨
l←≠r←⥊𝕩 ⋄ F←𝔽
𝕨 (0<l)◶⊢‿{
# Initial cell: cs⥊𝕨F¨c↑𝕩 if 𝕨 is given
{r↩≥⟜c◶⟨⊑⟜(⥊𝕩)⊸F,⊢⟩⟜(⊑⟜r)¨↕l}𝕨
# For non-initial elements, apply F to index i-c and i
# Must be ordered to compute value i-c first
(≢𝕩) ⥊ r {((𝕨-c)F○(⊑⟜𝕩)𝕨)𝕨_amend𝕩}´ (l-1)-↕l-c
} 𝕩
}
_repeat_←{
n←𝕨𝔾𝕩 # Repetition numbers
l←u←0 # Min and max repetitions
{!Int𝕩⋄!∞>|𝕩⋄l⌊↩𝕩⋄u⌈↩𝕩}⚇0 n
b←𝕨{⊢;𝕨{𝕗˙⊸𝕏}}0 # Bind 𝕨 to 𝕏 if necessary
i←⟨𝕩⟩⋄P←{𝕏⊣}∘B⊸{𝕎`i∾↕𝕩} # P makes a list of repetition 0, 1, …
pos←𝕗 P u # Positive repetitions
neg←𝕗 0⊸<◶⟨i,{𝕏⁼}⊸P⟩ -l # Negative repetitions
(|⊑<⟜0⊑pos‿neg˙)⚇0 n
}
#⌜
# LAYER 5: Structural functions
⊏ ← 0⊸Select ⊘ Select
↑ ← Prefixes ⊘ Take
↓ ← Suffixes ⊘ Drop
↕ ↩ ↕ ⊘ Windows
» ← Nudge ⊘ ShiftBefore
« ← NudgeBack ⊘ ShiftAfter
⌽ ← Reverse ⊘ Rotate
/ ← Indices ⊘ Replicate
# Multi-axis primitive: 𝔾 is applied to 𝕨 and determines the maximum
# depth of the one-axis case
_onAxes_←{
F←𝔽
(𝔾<≡)∘⊣◶{ # One axis
! 1≤=𝕩
𝕨F𝕩
}‿{ # Multiple axes
! 1≥=𝕨
! (≠𝕨)≤=𝕩
R←{(⊑𝕨)F(1 Drop1 𝕨)⊸R˘𝕩}⍟{0<≠𝕨} # Recurse, then handle one axis
𝕨R𝕩
}⟜ToArray
}
SelSub←{
! IsArray 𝕨
! ∧´⥊Int¨ 𝕨 # All integers
! ∧´⥊ 𝕨 (≥⟜-∧<) ≠𝕩 # In range
𝕨 +↩ (≠𝕩)×𝕨<0 # Wrap negatives
c←×´s←1 Cell 𝕩
⊑⟜(⥊𝕩)¨(c×𝕨)+⌜s⥊↕c # Extend each index to a whole cell
}
Select←ToArray⊸(SelSub _onAxes_ 1)
JoinTo←{
s←𝕨⋈○≢𝕩
a←1⌈´k←≠¨s # Argument ranks k and result rank a
! ∧´1≥a-k # Can add at most one axis
c←(k¬a)+⟜(↕a-1)⊸⊏¨s # Cell shapes
! ≡´c
l←+´(a=k)⊣◶1‿(⊑⊢)¨s # Total length
(⟨l⟩∾⊑c)⥊𝕨∾○⥊𝕩
}
Take←{
T←{
! Int 𝕨
l←≠𝕩
# Indices, with clamp and modulus so that fills are all l
i←(l+1)|¯1⌈l⌊((𝕨<0)×𝕨+l)+↕|𝕨
# Don't get the fill if not needed, as it can error
i⊏JoinTo⟜(1⊸Cell⥊Fill)⍟(∨´l=i)𝕩
}
# Add leading 1s to shape of 𝕩 first if necessary
𝕨 T _onAxes_ 0 (⟨1⟩⥊˜0⌈𝕨-○≠⊢)⊸∾∘≢⊸⥊𝕩
}
Drop←{
s←(≠𝕨)(⊣↑⊢∾˜1⥊˜0⌈-⟜≠)≢𝕩 # Padded shape
((s׬⊸-𝕨>0)+(-s)⌈s⌊𝕨)↑𝕩 # Clamp and complement, then use Take
}
Prefixes ← {!1≤=𝕩 ⋄ (↕1+≠𝕩)Take¨<𝕩}
Suffixes ← {!1≤=𝕩 ⋄ (↕1+≠𝕩)Drop¨<𝕩}
ShiftBefore ← {!𝕨1⊸⌈⊸≤○=𝕩 ⋄ ( ≠𝕩) ↑ 𝕨 JoinTo 𝕩}
ShiftAfter ← {!𝕨1⊸⌈⊸≤○=𝕩 ⋄ (-≠𝕩) ↑ 𝕩 JoinTo 𝕨}
Nudge ← (1↑0↑⊢)⊸ShiftBefore
NudgeBack ← (1↑0↑⊢)⊸ShiftAfter
Windows←{
! 1≥=𝕨
! (≠𝕨)≤=𝕩
! ∧´Nat¨⥊𝕨
s←𝕨≠⊸↑≢𝕩
! ∧´𝕨≤1+s
𝕨{
i ← s(¬+⌜○↕⊢)⥊𝕨 # Cell indices in 𝕩: add leading and trailing axes
c ← ><¨⊸⊏⟜𝕩¨i # Select the cells
((≢i)∾𝕨≠⊸↓≢𝕩)⥊c # Reshape in case it's empty
}⍟(0<≠𝕨)𝕩
}⟜ToArray
Reverse ← {!1≤=𝕩 ⋄ (-↕⊸¬≠𝕩)⊏𝕩}
Rotate ← {!Int𝕨 ⋄ l←≠𝕩⋄(l|𝕨+↕l)⊏𝕩} _onAxes_ 0
Indices←{
! 1==𝕩
! ∧´Nat¨𝕩
⟨⟩∾´𝕩⥊¨↕≠𝕩
}
Rep ← Indices⊸⊏
# Expand unit 𝕨 to length of 𝕩, and check length match for a list
Replicate ← ({0<=𝕨}◶(⊣˘)‿{!𝕨=○≠𝕩⋄𝕨}Rep⊢) _onAxes_ (1-0=≠)
#⌜
# LAYER 6: Everything else
∾ ↩ Join ⊘ JoinTo
⊔ ← GroupInds ⊘ Group
⍉ ← Transpose ⊘ ReorderAxes
∊ ← MarkFirst ⊘ (IndexOf˜<≠∘⊢)
⍷ ← ∊⊸/ ⊘ Find
⊐ ← ⍷⊸IndexOf ⊘ IndexOf
⍋ ← Cmp _grade ⊘ ( Cmp _bins)
⍒ ← -∘Cmp _grade ⊘ (-∘Cmp _bins)
∧ ↩ ⍋⊸⊏ ⊘ ∧
∨ ↩ ⍒⊸⊏ ⊘ ∨
⊒ ← OccurrenceCount⊘ ProgressiveIndexOf
identity { f‿i←𝕨 ⋄ f˙⊸=◶𝕩‿i }´↩ ⟨ ∨‿0, ∧‿1 ⟩
# Join of empty: multiply shape by (leading) fill shape
JoinEmpty ← ({!𝕨≤○≠𝕩⋄𝕨≠⊸((𝕨×↑)∾↓)𝕩}○≢⥊⊢)⟜Fill⍟HasFill
Join←(0<≠∘⥊)◶⟨JoinEmpty, (0<=)◶{!IsArray𝕩⋄>𝕩}‿{
! IsArray 𝕩
s←≢¨𝕩
a←(≢𝕩){(s⊑˜(j=𝕩)⊸×)¨↕𝕨}¨j←↕r←=𝕩 # Skeleton: elements 0,0,…k,…0 along each axis
h←(¬⟜(⌈´)≠¨)¨a # Which positions have the axis
! ∧´∧´¨0≤h # Rank can only change by 1 along a line
o←+`⊑¨h # Starting position of each axis in ⊑𝕩
t←(¯1⊑o)↓⊑s # Trailing axes
l←h{𝕎𝕩}¨˜(»o){⊣◶⟨1,𝕨⊸⊑⟩¨⟜𝕩}¨a # Length of each position on each axis
! s≡(<t)∾⌜´h⥊¨¨l # Shape agreement
i←(<⟨⟩)∾⌜´h{((↕¯1⊸⊑)-𝕩/𝕨⥊¨»)+`𝕩}¨l # Indices: ∾↕∘≢¨𝕩 if no trailing axes
>i<¨⊸⊏⍟(0<≠∘⊣)¨l/𝕩
}⟩
Group←{
! IsArray 𝕩
𝕨 ⋈∘ToArray⍟(2>≡)↩
! 1==𝕨
{!∧´Int¨𝕩⋄!∧´¯1≤𝕩}∘⥊¨𝕨 # Atoms in 𝕨 must be integers ≥¯1
n←+´r←=¨𝕨 # Number of ranks grouped for each result axis (r); total (n)
! n≤=𝕩
ld←(∾≢⌜𝕨)-n↑≢𝕩 # Extra elements
! ∧´(0⊸≤∧≤⟜(r/1=r))ld # Must be 0 extra, or possibly 1 for rank 1 components
dr←r⌊(0»+`r)⊏ld∾⟨0⟩ # Whether each result axis has a minimum length
s←dr⊣◶⟨0,¯1⊸⊑⟩¨𝕨 # Minimum shape required by extra elements
𝕨↩dr(⥊¯1⊸↓⍟⊣)¨𝕨 # Remove extra elements; deshape components
s⌈↩1+¯1⌈´¨𝕨 # Result shape
𝕩↩((≠¨𝕨)∾n↓≢𝕩)⥊𝕩 # Merge axes of 𝕩 that are handled together in 𝕨
(𝕨⊸=/𝕩˙)¨↕s # Construct each result group by filtering
}
GroupInds←{
! 1==𝕩
𝕩 ⊔ ↕ (1<≡)◶≠‿(∾≢¨) 𝕩
}
# Searching: use all-pairs comparisons
IndexOf←{
c←1-˜=𝕨
! 0≤c
! c≤=𝕩
𝕨 ∧○(0<≠)⟜⥊◶⟨0⥊˜c-⊸↓≢∘⊢, (+˝∧`)≢⎉c⎉c‿∞⟩ ToArray 𝕩
}
MarkFirst←{
! 1≤=𝕩
u←0↑𝕩
(0<≠)◶⟨⟨⟩,{⊑𝕩∊u}◶{u∾↩𝕩⋄1}‿0˘⟩𝕩
}
Find←{
r←=𝕨
! r≤=𝕩
𝕨 ≡⎉r ((1+r-⊸↑≢𝕩)⌊≢𝕨)⊸↕⎉r 𝕩
}○ToArray
ReorderAxes←{
𝕩<⍟(0=≡)↩
! 1≥=𝕨
𝕨⥊↩
! (≠𝕨)≤=𝕩
! ∧´Nat¨𝕨
r←(=𝕩)-+´¬∊𝕨 # Result rank: duplicates in 𝕨 reduce it
! ∧´𝕨<r
𝕨∾↩𝕨(¬∘∊˜/⊢)↕r # Add unused axes to the end
(𝕨⊸⊏⊑𝕩˙)¨↕⌊´¨𝕨⊔≢𝕩 # Reorder indices to select result elements
}
Transpose←(0<=)◶⟨ToArray,(=-1˙)⊸ReorderAxes⟩
# Sorting
Cmp ← ⌈○IsArray◶{ # No arrays
𝕨(>-<)𝕩
}‿{ # At least one array
ed←-´e←𝕨⋈○(∧´0<≢)𝕩
𝕨(ed=0)◶ed‿{
# Backup ordering by rank
c←𝕨×∘-○(IsArray+=)𝕩
# l is the number of elements to compare
# Also update backup ordering c if lengths differ
s←≢𝕨 ⋄ t←≢𝕩 ⋄ r←𝕨⌊○=𝕩
l←s{i←+´∧`𝕨=𝕩⋄m←(×´e)×´i↑𝕨⋄{c↩×-´𝕩⋄m×↩⌊´𝕩}∘(⊑¨⟜𝕨‿𝕩)⍟(r⊸>)i⋄m}○(r↑⌽)t
# Compare elements, stopping at the first difference
a←⥊𝕨⋄b←⥊𝕩
Trav←(=⟜l)◶{Trav∘(1+𝕩)⍟(0⊸=)a Cmp○(𝕩⊸⊑)b}‿c
Trav 0
}𝕩
}
_grade←{
! 1≤=𝕩
# Compare all cells and break ties with indices
# Then sum and invert as a permutation
i⊐˜+´˘(𝔽⎉∞‿¯1⎉¯1‿∞˜𝕩)(⌈⟜0+=⟜0⊸×)>⌜˜i←↕≠𝕩
}
_bins←{
c←1-˜=𝕨 # Rank of compared cells
! 0≤c
! c≤=𝕩
LE←𝔽⎉c≤0˙ # Does 𝕨 precede 𝕩?
! (0<≠)◶⟨1,∧´·LE˝˘2↕⊢⟩𝕨 # 𝕨 must be ordered
𝕨 (0<≠𝕨)◶⟨0⎉c∘⊢,+˝LE⎉¯1‿∞⟩ 𝕩 # Number of 𝕨 cells preceding or matching each 𝕩 cell
}
# ⊐˜ ranks without breaking ties and ⍋∘⍋ breaks ties, so the
# difference after adjusting ⊐˜ is the occurrence count
OccurrenceCount ← ⊐˜(⊢-⊏)⍋∘⍋
# Tag each cell with an occurrence count, then search
ProgressiveIndexOf ← {𝕨⊐○(((≢∾2˙)⥊≍˘⟜OccurrenceCount∘⥊)𝕨⊸⊐)𝕩}