forked from antononcube/MathematicaForPrediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathROCFunctions.m
605 lines (441 loc) · 24.2 KB
/
ROCFunctions.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
(*
Receiver operating characteristic functions Mathematica package
Copyright (C) 2016 Anton Antonov
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Written by Anton Antonov,
antononcube @ gmail . com,
Windermere, Florida, USA.
*)
(*
Mathematica is (C) Copyright 1988-2016 Wolfram Research, Inc.
Protected by copyright law and international treaties.
Unauthorized reproduction or distribution subject to severe civil
and criminal penalties.
Mathematica is a registered trademark of Wolfram Research, Inc.
*)
(* :Title: Receiver operating characteristic functions *)
(* :Context: ROCFunctions` *)
(* :Author: Anton Antonov *)
(* :Date: 2016-10-09 *)
(* :Package Version: 1.0 *)
(* :Mathematica Version: *)
(* :Copyright: (c) 2016 Anton Antonov *)
(* :Keywords: ROC, Reciever operating characteristic *)
(* :Discussion:
This package provides Receiver Operating Characteristic (ROC) functions calculation
and plotting. The ROC framework provides analysis and tuning of binary classifiers.
(The classifiers are assumed to classify into a positive/true label or a negative/false label. )
The function ROCFuntions gives access to the individual ROC functions
through string arguments. Those ROC functions are applied to special objects,
called ROC Association objects.
Each ROC Association object is an Association that has the following four keys:
"TruePositive", "FalsePositive", "TrueNegative", and "FalseNegative" .
Given two lists of actual and predicted labels a ROC Association object can be made
with the function ToROCAssociation .
For more definitions and example of ROC terminology and functions see:
https://en.wikipedia.org/wiki/Receiver_operating_characteristic .
Complete usage example with Linear regression
=============================================
Note that below although we use both of the provided Titanic training and test data,
the code is doing only training. The test data is used to find the the best tuning
parameter (threshold) through ROC analysis.
#### Using Titanic data
ExampleData[{"MachineLearning", "Titanic"}, "TrainingData"][[1 ;; 5]]
#### Get training and testing data
data = ExampleData[{"MachineLearning", "Titanic"}, "TrainingData"];
data = ((Flatten@*List) @@@ data)[[All, {1, 2, 3, -1}]];
trainingData = DeleteCases[data, {___, _Missing, ___}];
data = ExampleData[{"MachineLearning", "Titanic"}, "TestData"];
data = ((Flatten@*List) @@@ data)[[All, {1, 2, 3, -1}]];
testData = DeleteCases[data, {___, _Missing, ___}];
#### Replace categorical with numerical values
trainingData = trainingData /. {"survived" -> 1, "died" -> 0,
"1st" -> 0, "2nd" -> 1, "3rd" -> 2,
"male" -> 0, "female" -> 1};
testData = testData /. {"survived" -> 1, "died" -> 0,
"1st" -> 1, "2nd" -> 2, "3rd" -> 3,
"male" -> 0, "female" -> 1};
#### Do linear regression
lfm = LinearModelFit[{trainingData[[All, 1 ;; -2]], trainingData[[All, -1]]}]
#### Get the predicted values
modelValues = lfm @@@ testData[[All, 1 ;; -2]];
(*Histogram[modelValues,20]*)
TableForm[{Range[0, 1, 0.2], Quantile[modelValues, Range[0, 1, 0.2]]}]
#### Obtain ROC associations over a set of parameter values
testLabels = testData[[All, -1]];
thRange = Range[0.1, 0.9, 0.025];
aROCs = Table[ToROCAssociation[{0, 1}, testLabels, Map[If[# > th, 1, 0] &, modelValues]], {th, thRange}];
#### Evaluate ROC functions for given ROC association
Through[ROCFunctions[{"PPV", "NPV", "TPR", "ACC", "SPC"}][aROCs[[3]]]]
#### Standard ROC plot
ROCPlot[thRange, aROCs, "PlotJoined" -> Automatic, "ROCPointCallouts" -> True, "ROCPointTooltips" -> True,
GridLines -> Automatic]
#### Plot ROC functions wrt to parameter values
ListLinePlot[
Map[Transpose[{thRange, #}] &,
Transpose[Map[Through[ROCFunctions[{"PPV", "NPV", "TPR", "ACC", "SPC"}][#]] &, aROCs]]],
Frame -> True,
FrameLabel -> Map[Style[#, Larger] &, {"threshold, \[Theta]", "rate"}],
PlotLegends ->
Map[# <> ", " <> (ROCFunctions["FunctionInterpretations"][#]) &, {"PPV", "NPV", "TPR", "ACC", "SPC"}],
GridLines -> Automatic]
#### Finding the intersection point of PPV and TPR
We want to find a point that provides balanced positive and negative labels success rates.
One way to do this is to find the intersection point of the ROC functions
PPV (positive predictive value) and TPR (true positive rate).
Examining the plot above we can come up with the initial condition for x.
ppvFunc = Interpolation[Transpose@{thRange, ROCFunctions["PPV"] /@ aROCs}];
tprFunc = Interpolation[Transpose@{thRange, ROCFunctions["TPR"] /@ aROCs}];
FindRoot[Abs[ppvFunc[x] - tprFunc[x]] == 0, {x, 0.2}]
(* {x -> 0.3} *)
## Comments
Remark:
The requirements for atomic labels probably can be removed, but I decided to be conservative and impose
that restriction.
Anton Antonov
2016-10-09
Windermere, FL, USA
*)
(*
# Update March-April 2018
I added the function ROCValues that corresponds in spirit to the function ROCValues in the file:
https://github.com/antononcube/MathematicaForPrediction/blob/master/R/VariableImportanceByClassifiers.R .
In R because we can get from most classifiers matrices with named columns that correspond to the class labels
and entries that correspond to the probabilities for those class labels. (The rows correspond to the test records.)
In Mathematica the build-in classifiers can return lists of Association objects (using the "Probabilities" property.)
These lists can easily be turned into Dataset objects that have named columns.
Hence ROCValues below is based on Dataset objects.
I also added the Association key "ROCParameter" to the ROC Associations objects. This makes the use ROCPlot
easier in many cases.
*)
(* Created by Mathematica Plugin for IntelliJ IDEA *)
BeginPackage["ROCFunctions`"];
ToROCAssociation::usage = "ToROCAssociation[ {trueLabel, falseLabel}, actualLabels, predictedLabels] converts \
two labels lists (actual and predicted) into an Association that can be used as an argument for the ROC functions. \
See ROCFunctions .";
ROCAssociationQ::usage = "Verifies that the argument is a valid ROC Association object. \
A ROC Association object has the keys \
\"TruePositive\", \"FalsePositive\", \"TrueNegative\", and \"FalseNegative\" .";
ROCFunctions::usage = "Gives access to the implement ROC functions.
It can be used as Thread[ROCFunctions[][rocAssoc]] or Thread[ROCFunctions[{\"TPR\",\"SPC\"}][rocAssoc]] .\
See ROCFunctions[\"FunctionInterpretations\"] for available functions and their interpretations.";
ROCPlot::usage = "Makes a standard ROC plot for specified parameter list and corresponding ROC Association objects. \
ROCPlot takes all options of Graphics and additional options for \
ROC points size, color, callouts, tooltips, and joining. \
The allowed signatures are: \
\nROCPlot[ aROCs:{_?ROCAssociationQ..}, opts] \
\nROCPlot[ parVals:({_?NumericQ..}|Automatic), aROCs:{_?ROCAssociationQ..}, opts] \
\nROCPlot[ xFuncName_String, yFuncName_String, aROCs:{_?ROCAssociationQ..}, opts] \
\nROCPlot[ xFuncName_String, yFuncName_String, parVals:({_?NumericQ..}|Automatic), aROCs:{_?ROCAssociationQ..}, opts]";
ROCValues::usage = "ROCValues[predictionProbabilities_Dataset, actualLabels_List, thRange_?VectorQ ] \
computes ROC associations (for ROCPlot).";
ToClassifyROCCurvePlot::usage = "Changes the style of ROCPlot plots. (Experimental.)";
ConfusionMatrixPlot::usage = "ConfusionMatrixPlot[ aROC_?ROCAssociationQ, labelNames: {yesLabel_, noLabel_}
plots a confusion matrix based on a ROC association.";
ConfusionMatrixPlotFrame::usage = "ConfusionMatrixPlotFrame[mat, refMat, rowNames, columnNames, opts]
frames a given confusion matrix.";
Begin["`Private`"];
Clear[ToROCAssociation];
ToROCAssociation::nalbl = "The the first argument is expected to be list of two atomic elements,
or a list of an atomic label and a list of atomic labels.";
ToROCAssociation::nvecs = "The the second and third arguments are expected to be vectors of the same length.";
ToROCAssociation::sgntrs = "The allowed signatures are one of : \
\nToROCAssociation[ {trueLabel_?AtomQ, falseLabel:(_?AtomQ|{_?AtomQ..})}, actualLabels_, predictedLabels_ ] , \
\nToROCAssociation[ {trueLabel_?AtomQ, falseLabel_?AtomQ}, apfAssoc_Association] .";
ToROCAssociation[ {trueLabel_, falseLabel_}, actualLabels_List, predictedLabels_List ] :=
Block[{ra,localFalseLabel, flRules},
If[ ! ( AtomQ[trueLabel] && ( AtomQ[falseLabel] || MatchQ[falseLabel,{_?AtomQ..}] ) ),
Message[ToROCAssociation::nalbl];
Return[$Failed]
];
If[ ! ( VectorQ[actualLabels] && VectorQ[predictedLabels] && Length[actualLabels] == Length[predictedLabels] ),
Message[ToROCAssociation::nvecs];
Return[$Failed]
];
If[ AtomQ[falseLabel],
localFalseLabel = falseLabel;
ra = Tally[Transpose[{actualLabels,predictedLabels}]],
(*ELSE*)
localFalseLabel = "Not-"<>ToString[trueLabel];
flRules = Dispatch[ Thread[falseLabel->localFalseLabel]];
ra = Tally[Transpose[{actualLabels/.flRules,predictedLabels/.flRules}]]
];
ra = Association[ Rule @@@ ra ];
ra = Join[ Association @ Flatten[Outer[{#1,#2}->0&,{trueLabel,localFalseLabel},{trueLabel,localFalseLabel}]], ra ];
ToROCAssociation[{trueLabel, localFalseLabel}, ra]
];
ToROCAssociation[ {trueLabel_?AtomQ, falseLabel_?AtomQ}, apfAssoc_Association] :=
Block[{},
Association[
{ "TruePositive" -> apfAssoc[{trueLabel, trueLabel}],
"FalsePositive" -> apfAssoc[{falseLabel, trueLabel}],
"TrueNegative" -> apfAssoc[{falseLabel, falseLabel}],
"FalseNegative" -> apfAssoc[{trueLabel, falseLabel}]
}]
];
ToROCAssociation[___] := (Message[ToROCAssociation::sgntrs];$Failed);
Clear[ROCAssociationQ]
ROCAssociationQ[ obj_ ] :=
AssociationQ[obj] &&
Length[Intersection[Keys[obj],{"TruePositive","FalsePositive","TrueNegative","FalseNegative"}]] == 4;
TPR[rocAssoc_?ROCAssociationQ] := (rocAssoc["TruePositive"])/(rocAssoc["TruePositive"] + rocAssoc["FalseNegative"]);
TPR[rocs : ({_?ROCAssociationQ..} | <|_?ROCAssociationQ..|> )] := Map[TPR, rocs];
SPC[rocAssoc_?ROCAssociationQ] := (rocAssoc["TrueNegative"])/(rocAssoc["FalsePositive"] + rocAssoc["TrueNegative"]);
SPC[rocs : ({_?ROCAssociationQ..} | <|_?ROCAssociationQ..|> )] := Map[SPC, rocs];
PPV[rocAssoc_?ROCAssociationQ] := (rocAssoc["TruePositive"])/(rocAssoc["TruePositive"] + rocAssoc["FalsePositive"]);
PPV[rocs : ({_?ROCAssociationQ..} | <|_?ROCAssociationQ..|> )] := Map[PPV, rocs];
NPV[rocAssoc_?ROCAssociationQ] := (rocAssoc["TrueNegative"])/(rocAssoc["TrueNegative"] + rocAssoc["FalseNegative"]);
NPV[rocs : ({_?ROCAssociationQ..} | <|_?ROCAssociationQ..|> )] := Map[NPV, rocs];
FPR[rocAssoc_?ROCAssociationQ] := (rocAssoc["FalsePositive"])/(rocAssoc["FalsePositive"] + rocAssoc["TrueNegative"]);
FPR[rocs : ({_?ROCAssociationQ..} | <|_?ROCAssociationQ..|> )] := Map[FPR, rocs];
FDR[rocAssoc_?ROCAssociationQ] := (rocAssoc["FalsePositive"])/(rocAssoc["FalsePositive"] + rocAssoc["TruePositive"]);
FDR[rocs : ({_?ROCAssociationQ..} | <|_?ROCAssociationQ..|> )] := Map[FDR, rocs];
FNR[rocAssoc_?ROCAssociationQ] := (rocAssoc["FalseNegative"])/(rocAssoc["FalseNegative"] + rocAssoc["TruePositive"]);
FNR[rocs : ({_?ROCAssociationQ..} | <|_?ROCAssociationQ..|> )] := Map[FNR, rocs];
ACC[rocAssoc_?ROCAssociationQ] := (rocAssoc["TruePositive"] + rocAssoc["TrueNegative"]) / Total[Values[rocAssoc]];
ACC[rocs : ({_?ROCAssociationQ..} | <|_?ROCAssociationQ..|> )] := Map[ACC, rocs];
FOR[rocAssoc_?ROCAssociationQ] := 1 - NPV[rocAssoc];
FOR[rocs : ({_?ROCAssociationQ..} | <|_?ROCAssociationQ..|> )] := Map[FOR, rocs];
F1[rocAssoc_?ROCAssociationQ] := 2 * PPV[rocAssoc] * TPR[rocAssoc] / ( PPV[rocAssoc] + TPR[rocAssoc] );
F1[rocs : ({_?ROCAssociationQ..} | <|_?ROCAssociationQ..|> )] := Map[F1, rocs];
(*
Note the addition of the points {0,0} and {1,1}.
If
rps = Transpose[{ROCFunctions["FPR"] /@ pROCs, ROCFunctions["TPR"] /@ pROCs}] ]
has points {0, p0} and at {1, p1} then after applying Sort and Partition[#,2,1]&
we will get 0-length intervals and correctly ordered pairs, i.e.
{ {{0,0}, {0,p0}}, {{0, p0}, _}, ___, {_, {1,p1}}, {{1,p1}, {1,1}} } .
Hence the trapezoidal formula integration is going to work correctly.
*)
AUROC[pROCs:{_?ROCAssociationQ..}] :=
Total[Partition[ Sort @ Join[ { {0,0}, {1,1} }, Transpose[{ROCFunctions["FPR"] /@ pROCs, ROCFunctions["TPR"] /@ pROCs}] ], 2, 1]
/. {{x1_, y1_}, {x2_, y2_}} :> (x2 - x1) (y1 + (y2 - y1)/2)];
AUROC[rocs : ({_?ROCAssociationQ..} | <|_?ROCAssociationQ..|> )] := Map[AUROC, rocs];
MCC[rocAssoc_?ROCAssociationQ] :=
Block[{tp, tn, fp, fn, tpfp, tpfn, tnfp, tnfn},
{tp, tn, fp, fn} = Through[ { TPR, SPC, FPR, FNR}[rocAssoc] ];
{tpfp, tpfn, tnfp, tnfn} = Map[ If[#==0, 1,#]&, { tp + fp, tp + fn, tn + fp, tn + fn }];
(tp*tn - fp*fn) / Sqrt[ tpfp * tpfn * tnfp * tnfn ]
];
MCC[rocs : ({_?ROCAssociationQ..} | <|_?ROCAssociationQ..|> )] := Map[MCC, rocs];
aROCAcronyms =
AssociationThread[
{"TPR", "TNR", "SPC", "PPV", "NPV", "FPR", "FDR", "FNR", "ACC", "AUROC", "FOR",
"F1", "MCC", "Recall", "Precision", "Accuracy", "Sensitivity"},
{"true positive rate", "true negative rate", "specificity", "positive predictive value",
"negative predictive value", "false positive rate",
"false discovery rate", "false negative rate", "accuracy", "area under the ROC curve", "false omission rate",
"F1 score", "Matthews correlation coefficient",
"same as TPR", "same as PPV", "same as ACC", "same as TPR"}
];
aROCFunctions =
Join[
AssociationThread[
{"TPR", "TNR", "SPC", "PPV", "NPV", "FPR", "FDR", "FNR", "ACC", "AUROC", "FOR", "F1", "MCC"},
{TPR, SPC, SPC, PPV, NPV, FPR, FDR, FNR, ACC, AUROC, FOR, F1, MCC}],
AssociationThread[
{"Recall", "Sensitivity", "Precision", "Accuracy", "Specificity",
"FalsePositiveRate", "TruePositiveRate", "FalseNegativeRate", "TrueNegativeRate", "FalseDiscoveryRate",
"FalseOmissionRate", "F1Score", "AreaUnderROCCurve", "MatthewsCorrelationCoefficient" },
{TPR, TPR, PPV, ACC, SPC, FPR, TPR, FNR, SPC, FDR, FOR, F1, AUROC, MCC }
]
];
Clear[ROCFunctions]
ROCFunctions["Methods"] := {"FunctionInterpretations", "FunctionNames", "Functions", "Methods", "Properties"};
ROCFunctions["Properties"] := ROCFunctions["Methods"];
ROCFunctions["FunctionNames"] := Keys[aROCAcronyms];
ROCFunctions["FunctionInterpretations"] := aROCAcronyms;
ROCFunctions["FunctionsAssociation"] := aROCFunctions;
ROCFunctions["Functions"] := Union[Values[aROCFunctions]];
ROCFunctions[] := Evaluate[ROCFunctions["FunctionsAssociation"]];
ROCFunctions[fnames:{_String..}] := aROCFunctions/@fnames;
ROCFunctions[fname_String] := aROCFunctions[fname];
Clear[ROCPlot];
ROCPlot::apv = "The parameter values are specified as Automatic, but extracting \"ROCParameter\" from the ROC data\
did not produce a numerical vector.";
Options[ROCPlot] =
Join[ {"ROCPointSize"-> 0.02, "ROCColor"-> Lighter[Blue], "ROCPointColorFunction" -> Automatic,
"ROCPointTooltips"->True, "ROCPointCallouts"->True, "ROCCurveColorFunction" -> Automatic,
"PlotJoined" -> True }, Options[Graphics]];
ROCSpecQ[arg_] :=
MatchQ[ arg, {_?ROCAssociationQ..} | {{_?ROCAssociationQ..}..} | Association[ (_->{_?ROCAssociationQ..})..] ];
ROCPlot[ aROCs_?ROCSpecQ, opts:OptionsPattern[]] :=
ROCPlot[ "FPR", "TPR", Automatic, aROCs, opts];
ROCPlot[ parVals_List, aROCs_?ROCSpecQ, opts:OptionsPattern[]] :=
ROCPlot[ "FPR", "TPR", parVals, aROCs, opts];
ROCPlot[ xFuncName_String, yFuncName_String, aROCs_?ROCSpecQ, opts:OptionsPattern[]] :=
ROCPlot[ xFuncName, yFuncName, Automatic, aROCs, opts];
ROCPlot[
xFuncName_String, yFuncName_String,
parValsArg : (Automatic | {_?NumericQ..} | _List),
aROCs : {{_?ROCAssociationQ..}..}, opts : OptionsPattern[]] :=
ROCPlot[ xFuncName, yFuncName, parValsArg, AssociationThread[ Range[Length[aROCs]], aROCs], opts ];
ROCPlot[
xFuncName_String, yFuncName_String,
parValsArg : (Automatic | {_?NumericQ..} | _List),
aROCs : Association[ (_->{_?ROCAssociationQ..}) .. ], opts : OptionsPattern[]] :=
Block[{rocCurveColorFunc, cls, grs},
rocCurveColorFunc = OptionValue[ROCPlot, "ROCCurveColorFunction"];
If[ TrueQ[rocCurveColorFunc === Automatic],
rocCurveColorFunc = ColorData["DarkBands", "ColorFunction"];
];
cls = rocCurveColorFunc /@ Rescale[Range[Length[aROCs]]];
grs = MapThread[ ROCPlot[xFuncName, yFuncName, #2, opts, "PlotJoined" -> True, "ROCColor" -> #3 ] &, {Keys[aROCs], Values[aROCs], cls}];
Legended[Show[grs], SwatchLegend[cls, Keys[aROCs]]]
];
ROCPlot[
xFuncName_String, yFuncName_String,
parValsArg : (Automatic | {_?NumericQ..} | _List),
aROCs : {_?ROCAssociationQ..}, opts : OptionsPattern[]] :=
Block[{xFunc, yFunc, psize, rocc, pt, pc, pj, rocpcf, points, parVals=parValsArg, pred},
psize = OptionValue["ROCPointSize"];
rocc = OptionValue["ROCColor"];
rocpcf = OptionValue["ROCPointColorFunction"];
{pt, pc, pj} = TrueQ[OptionValue[#]] & /@ { "ROCPointTooltips", "ROCPointCallouts", "PlotJoined" };
pj = pj || !pj && TrueQ[OptionValue["PlotJoined"]===Automatic];
{xFunc, yFunc} = ROCFunctions[{xFuncName, yFuncName}];
points = Map[Through[{xFunc,yFunc}[#1]] &, aROCs];
If[TrueQ[parVals===Automatic], parVals = Map[#["ROCParameter"]&,aROCs] ];
(*If[ !VectorQ[parVals,NumericQ],
Message[ROCPlot::apv];
Return[$Failed]
];*)
pred = Map[VectorQ[#,NumericQ]&, points ];
points = Pick[points, pred];
parVals = Pick[parVals, pred];
Graphics[{
If[pj, {Lighter[rocc],Line[points]},{}],
PointSize[psize], rocc,
If[pj, Line[points]],
If[ TrueQ[rocpcf===Automatic] || pj,
Which[
pt,
MapThread[Tooltip[Point[#1], #2] &, {points, parVals}],
!pt,
Point[points],
True,
Nothing
],
(*ELSE*)
Which[
pt,
MapThread[{rocpcf[#1,#2,#3],Tooltip[Point[#1], #2]} &, {points, parVals, Range[Length[points]]}],
True,
MapThread[{rocpcf[#1,#2,#3],Point[#]}&, {points, parVals, Range[Length[points]]}]
]
],
Black,
If[ pc,
MapThread[
Text[#2, #1, {-1, 2}] &, {points, parVals}],
{}
]},
AspectRatio -> 1, Frame -> True,
FrameLabel ->
Map[Style[StringRiffle[{#, Lookup[ROCFunctions["FunctionInterpretations"], #, Nothing]}, ", "], Larger, Bold] &, {xFuncName,yFuncName}],
DeleteCases[{opts},
( "ROCPointSize" | "ROCColor" | "ROCPointColorFunction" |
"ROCPointTooltips" | "ROCPointCallouts" | "ROCCurveColorFunction" | "PlotJoined") -> _ ]
]
] /; Length[parValsArg] == Length[aROCs] || TrueQ[parValsArg===Automatic];
Clear[ROCValues];
ROCValues::nrng = "The range argument is expected to be a list of numbers between 0 and 1.";
ROCValues::nlen = "The prediction probabilities Dataset object and the actual labels (the first and second arguments) \
are expected to have equal lengths.";
ROCValues::nlbl = "The value of \"ClassLabel\" is expected to be one of the columns of the first argument.";
ROCValues::args = "The arguments are expected to be a predictions probabilities Dataset, \
a list of actual labels, and threshold range.";
Options[ROCValues] = {"ClassLabel"->Automatic};
ROCValues[clRes_Dataset, testLabels_List, opts:OptionsPattern[]] :=
ROCValues[clRes, testLabels, Range[0, 1, 0.05], opts];
ROCValues[predictionProbabilities_Dataset, actualLabels_List, thRange_?VectorQ, opts:OptionsPattern[]] :=
Block[{ focusClassLabel, classLabels, predictedLabels, rocRes, mainLabel, notMainLabel, modifiedActualLabels},
If[ Length[predictionProbabilities] != Length[actualLabels],
Message[ROCValues::nlen];
$Failed
];
If[ ! ( VectorQ[ thRange, NumberQ] && Apply[And, Map[1 >= # >= 0&, thRange] ] ),
Message[ROCValues::nrng];
$Failed
];
focusClassLabel = OptionValue[ROCValues, "ClassLabel"];
If[ TrueQ[focusClassLabel===Automatic],
focusClassLabel = First @ Normal @ Keys[predictionProbabilities[1]]
];
If[ !MemberQ[Normal @ Keys[predictionProbabilities[1]], focusClassLabel ],
Message[ROCValues::nlbl];
$Failed
];
mainLabel = ToString[focusClassLabel];
notMainLabel = "Not-"<>mainLabel;
modifiedActualLabels = If[ # == mainLabel, #, notMainLabel]& /@ actualLabels;
(*This is no longer actual: classLabels = Normal[Keys[predictionProbabilities[1]]];*)
classLabels = {mainLabel,notMainLabel};
Table[
predictedLabels =
Normal @ predictionProbabilities[All, If[#[[1]] >= th, mainLabel, notMainLabel] &];
rocRes = ToROCAssociation[classLabels, modifiedActualLabels, predictedLabels];
If[ AssociationQ[rocRes],
Join[<|"ROCParameter" -> th|>, rocRes],
$Failed
]
, {th, thRange}]
];
ROCValues[___] :=
Block[{},
Message[ROCValues::args];
$Failed
];
Clear[ToClassifyROCCurvePlot];
ToClassifyROCCurvePlot[gr_] :=
Block[{cols, pFunc},
pFunc[x_, {cedge_RGBColor, cface_RGBColor}] := {EdgeForm[cedge], FaceForm[{cface, Opacity[0.34]}], Polygon[x]};
cols = Cases[gr, _RGBColor, Infinity];
gr /. {Line[x__] -> pFunc[x, {Darker[Blue], LightBlue}], PointSize[x_] -> PointSize[0.001]}
];
(*
Modified/productized version of kglr's MSE answer: https://mathematica.stackexchange.com/a/200221/34008 .
*)
Clear[ConfusionMatrixPlot];
Options[ConfusionMatrixPlot] = Join[ { "Normalize" -> False }, Options[MatrixPlot] ];
ConfusionMatrixPlot[ aROC_?ROCAssociationQ, labelNames: {yesLabel_, noLabel_}: {"True", "False"}, opts:OptionsPattern[] ] :=
Block[{mat, refMat},
mat = { {aROC["FalseNegative"], aROC["TruePositive"]}, {aROC["TrueNegative"], aROC["FalsePositive"]}};
refMat = mat;
If[ TrueQ[OptionValue[ConfusionMatrixPlot, "Normalize"]],
mat = N[ mat / { aROC["TruePositive"] + aROC["FalseNegative"], aROC["TrueNegative"] + aROC["FalsePositive"]} ];
];
ConfusionMatrixPlotFrame[ mat, refMat, labelNames, labelNames, opts]
];
Clear[ConfusionMatrixPlotFrame];
Options[ConfusionMatrixPlotFrame] = Options[MatrixPlot];
ConfusionMatrixPlotFrame[ mat_?MatrixQ, rowNames_List, columnNames_List, opts:OptionsPattern[] ] :=
ConfusionMatrixPlotFrame[ mat, mat, rowNames, columnNames, opts ];
ConfusionMatrixPlotFrame[ mat_?MatrixQ, refMat_?MatrixQ, rowNames_List, columnNames_List, opts:OptionsPattern[] ] :=
Block[{},
MatrixPlot[mat,
FilterRules[{opts}, Options[MatrixPlot]],
ColorRules -> {0 -> White},
Frame -> True,
FrameLabel -> {"actual", "predicted"},
FrameTicks ->
{{MapIndexed[{#2[[1]], #} &, rowNames], MapIndexed[{#2[[1]], #} &, Total@Transpose@refMat]},
{MapIndexed[{#2[[1]], #} &, Total[refMat]], MapIndexed[{#2[[1]], #} &, columnNames]}},
(* ColorFunction -> "Rainbow",*)
Epilog -> MapIndexed[Text[#, #2 - 1/2] &, Transpose@Reverse@mat, {2}]]
];
ConfusionMatrixPlotFrame[ smat_?AssociationQ, opts:OptionsPattern[] ] :=
Block[{},
ConfusionMatrixPlotFrame[ Sequence @@ Values[smat], opts]
] /; Sort[Keys[smat]] == Sort[{"SparseMatrix", "RowNames", "ColumnNames"}];
End[]; (* `Private` *)
EndPackage[]