-
-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathsample.cpp
612 lines (558 loc) · 19.9 KB
/
sample.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
#include <cstdlib>
#include <cstddef>
#include "util/sample.h"
#include "util/math.h"
#ifdef __WINDOWS__
#include <QtGlobal>
typedef qint64 int64_t;
typedef qint32 int32_t;
#endif
// LOOP VECTORIZED below marks the loops that are processed with the 128 bit SSE
// registers as tested with gcc 7.5 and the -ftree-vectorize -fopt-info-vec-optimized flags on
// an Intel i5 CPU. When changing, be careful to not disturb the vectorization.
// https://gcc.gnu.org/projects/tree-ssa/vectorization.html
// This also utilizes AVX registers when compiled for a recent 64-bit CPU
// using scons optimize=native.
// "SINT i" is the preferred loop index type that should allow vectorization in
// general. Unfortunately there are exceptions where "int i" is required for some reasons.
namespace {
#ifdef __AVX__
constexpr size_t kAlignment = 32;
#else
constexpr size_t kAlignment = 16;
#endif
// TODO() Check if uintptr_t is available on all our build targets and use that
// instead of size_t, we can remove the sizeof(size_t) check than
constexpr bool useAlignedAlloc() {
// This will work on all targets and compilers.
// It will return true bot 32 bit builds and false for 64 bit builds
return alignof(max_align_t) < kAlignment &&
sizeof(CSAMPLE*) == sizeof(size_t);
}
} // anonymous namespace
// static
CSAMPLE* SampleUtil::alloc(SINT size) {
// To speed up vectorization we align our sample buffers to 16-byte (128
// bit) boundaries on SSE builds and 32-byte (256 bit) on AVX builds so
// that vectorized loops doesn't have to do a serial ramp-up before going
// parallel.
//
// Pointers returned by malloc are aligned for the largest scalar type. On
// most platforms the largest scalar type is long double (16 bytes).
// However, on MSVC x86 long double is 8 bytes.
// This can be tested via alignof(std::max_align_t)
if (useAlignedAlloc()) {
#if defined(_MSC_VER)
// On MSVC, we use _aligned_malloc to handle aligning pointers to 16-byte
// boundaries.
return static_cast<CSAMPLE*>(
_aligned_malloc(sizeof(CSAMPLE) * size, kAlignment));
#elif defined(_GLIBCXX_HAVE_ALIGNED_ALLOC)
std::size_t alloc_size = sizeof(CSAMPLE) * size;
// The size (in bytes) must be an integral multiple of kAlignment
std::size_t aligned_alloc_size = alloc_size;
if (alloc_size % kAlignment != 0) {
aligned_alloc_size += (kAlignment - alloc_size % kAlignment);
}
DEBUG_ASSERT(aligned_alloc_size % kAlignment == 0);
return static_cast<CSAMPLE*>(std::aligned_alloc(kAlignment, aligned_alloc_size));
#else
// On other platforms that might not support std::aligned_alloc
// yet but where long double is 8 bytes this code allocates 16 additional
// slack bytes so we can adjust the pointer we return to the caller to be
// 16-byte aligned. We record a pointer to the true start of the buffer
// in the slack space as well so that we can free it correctly.
const size_t alignment = kAlignment;
const size_t unaligned_size = sizeof(CSAMPLE[size]) + alignment;
void* pUnaligned = std::malloc(unaligned_size);
if (pUnaligned == NULL) {
return NULL;
}
// Shift
void* pAligned = (void*)(((size_t)pUnaligned & ~(alignment - 1)) + alignment);
// Store pointer to the original buffer in the slack space before the
// shifted pointer.
*((void**)(pAligned) - 1) = pUnaligned;
return static_cast<CSAMPLE*>(pAligned);
#endif
} else {
// Our platform already produces aligned pointers (or is an exotic target)
return new CSAMPLE[size];
}
}
void SampleUtil::free(CSAMPLE* pBuffer) {
// See SampleUtil::alloc() for details
if (useAlignedAlloc()) {
#if defined(_MSC_VER)
_aligned_free(pBuffer);
#elif defined(_GLIBCXX_HAVE_ALIGNED_ALLOC)
std::free(pBuffer);
#else
// Pointer to the original memory is stored before pBuffer
if (!pBuffer) {
return;
}
std::free(*((void**)((void*)pBuffer) - 1));
#endif
} else {
delete[] pBuffer;
}
}
// static
void SampleUtil::applyGain(CSAMPLE* pBuffer, CSAMPLE_GAIN gain,
SINT numSamples) {
if (gain == CSAMPLE_GAIN_ONE) {
return;
}
if (gain == CSAMPLE_GAIN_ZERO) {
clear(pBuffer, numSamples);
return;
}
// note: LOOP VECTORIZED.
for (SINT i = 0; i < numSamples; ++i) {
pBuffer[i] *= gain;
}
}
// static
void SampleUtil::applyRampingGain(CSAMPLE* pBuffer, CSAMPLE_GAIN old_gain,
CSAMPLE_GAIN new_gain, SINT numSamples) {
if (old_gain == CSAMPLE_GAIN_ONE && new_gain == CSAMPLE_GAIN_ONE) {
return;
}
if (old_gain == CSAMPLE_GAIN_ZERO && new_gain == CSAMPLE_GAIN_ZERO) {
clear(pBuffer, numSamples);
return;
}
const CSAMPLE_GAIN gain_delta = (new_gain - old_gain)
/ CSAMPLE_GAIN(numSamples / 2);
if (gain_delta != 0) {
const CSAMPLE_GAIN start_gain = old_gain + gain_delta;
// note: LOOP VECTORIZED.
for (int i = 0; i < numSamples / 2; ++i) {
const CSAMPLE_GAIN gain = start_gain + gain_delta * i;
// a loop counter i += 2 prevents vectorizing.
pBuffer[i * 2] *= gain;
pBuffer[i * 2 + 1] *= gain;
}
} else {
// note: LOOP VECTORIZED.
for (int i = 0; i < numSamples; ++i) {
pBuffer[i] *= old_gain;
}
}
}
// static
void SampleUtil::applyAlternatingGain(CSAMPLE* pBuffer, CSAMPLE gain1,
CSAMPLE gain2, SINT numSamples) {
// This handles gain1 == CSAMPLE_GAIN_ONE && gain2 == CSAMPLE_GAIN_ONE as well.
if (gain1 == gain2) {
applyGain(pBuffer, gain1, numSamples);
return;
}
// note: LOOP VECTORIZED.
for (SINT i = 0; i < numSamples / 2; ++i) {
pBuffer[i * 2] *= gain1;
pBuffer[i * 2 + 1] *= gain2;
}
}
void SampleUtil::applyRampingAlternatingGain(CSAMPLE* pBuffer,
CSAMPLE gain1, CSAMPLE gain2,
CSAMPLE gain1Old, CSAMPLE gain2Old, SINT numSamples) {
if (gain1 == gain1Old && gain2 == gain2Old){
applyAlternatingGain(pBuffer, gain1, gain2, numSamples);
return;
}
const CSAMPLE_GAIN gain1Delta = (gain1 - gain1Old)
/ CSAMPLE_GAIN(numSamples / 2);
if (gain1Delta != 0) {
const CSAMPLE_GAIN start_gain = gain1Old + gain1Delta;
// note: LOOP VECTORIZED.
for (int i = 0; i < numSamples / 2; ++i) {
const CSAMPLE_GAIN gain = start_gain + gain1Delta * i;
pBuffer[i * 2] *= gain;
}
} else {
// not vectorized: vectorization not profitable.
for (int i = 0; i < numSamples / 2; ++i) {
pBuffer[i * 2] *= gain1Old;
}
}
const CSAMPLE_GAIN gain2Delta = (gain2 - gain2Old)
/ CSAMPLE_GAIN(numSamples / 2);
if (gain2Delta != 0) {
const CSAMPLE_GAIN start_gain = gain2Old + gain2Delta;
// note: LOOP VECTORIZED.
for (int i = 0; i < numSamples / 2; ++i) {
const CSAMPLE_GAIN gain = start_gain + gain2Delta * i;
pBuffer[i * 2 + 1] *= gain;
}
} else {
// not vectorized: vectorization not profitable.
for (int i = 0; i < numSamples / 2; ++i) {
pBuffer[i * 2 + 1] *= gain2Old;
}
}
}
// static
void SampleUtil::add(CSAMPLE* M_RESTRICT pDest,
const CSAMPLE* M_RESTRICT pSrc,
SINT numSamples) {
// note: LOOP VECTORIZED.
for (SINT i = 0; i < numSamples; ++i) {
pDest[i] += pSrc[i];
}
}
// static
void SampleUtil::addWithGain(CSAMPLE* M_RESTRICT pDest,
const CSAMPLE* M_RESTRICT pSrc,
CSAMPLE_GAIN gain, SINT numSamples) {
if (gain == CSAMPLE_GAIN_ZERO) {
return;
}
// note: LOOP VECTORIZED.
for (SINT i = 0; i < numSamples; ++i) {
pDest[i] += pSrc[i] * gain;
}
}
void SampleUtil::addWithRampingGain(CSAMPLE* M_RESTRICT pDest,
const CSAMPLE* M_RESTRICT pSrc,
CSAMPLE_GAIN old_gain, CSAMPLE_GAIN new_gain,
SINT numSamples) {
if (old_gain == CSAMPLE_GAIN_ZERO && new_gain == CSAMPLE_GAIN_ZERO) {
return;
}
const CSAMPLE_GAIN gain_delta = (new_gain - old_gain)
/ CSAMPLE_GAIN(numSamples / 2);
if (gain_delta != 0) {
const CSAMPLE_GAIN start_gain = old_gain + gain_delta;
// note: LOOP VECTORIZED.
for (int i = 0; i < numSamples / 2; ++i) {
const CSAMPLE_GAIN gain = start_gain + gain_delta * i;
pDest[i * 2] += pSrc[i * 2] * gain;
pDest[i * 2 + 1] += pSrc[i * 2 + 1] * gain;
}
} else {
// note: LOOP VECTORIZED.
for (int i = 0; i < numSamples; ++i) {
pDest[i] += pSrc[i] * old_gain;
}
}
}
// static
void SampleUtil::add2WithGain(CSAMPLE* M_RESTRICT pDest,
const CSAMPLE* M_RESTRICT pSrc1, CSAMPLE_GAIN gain1,
const CSAMPLE* M_RESTRICT pSrc2, CSAMPLE_GAIN gain2,
SINT numSamples) {
if (gain1 == CSAMPLE_GAIN_ZERO) {
addWithGain(pDest, pSrc2, gain2, numSamples);
return;
} else if (gain2 == CSAMPLE_GAIN_ZERO) {
addWithGain(pDest, pSrc1, gain1, numSamples);
return;
}
// note: LOOP VECTORIZED.
for (int i = 0; i < numSamples; ++i) {
pDest[i] += pSrc1[i] * gain1 + pSrc2[i] * gain2;
}
}
// static
void SampleUtil::add3WithGain(CSAMPLE* pDest,
const CSAMPLE* M_RESTRICT pSrc1, CSAMPLE_GAIN gain1,
const CSAMPLE* M_RESTRICT pSrc2, CSAMPLE_GAIN gain2,
const CSAMPLE* M_RESTRICT pSrc3, CSAMPLE_GAIN gain3,
SINT numSamples) {
if (gain1 == CSAMPLE_GAIN_ZERO) {
add2WithGain(pDest, pSrc2, gain2, pSrc3, gain3, numSamples);
return;
} else if (gain2 == CSAMPLE_GAIN_ZERO) {
add2WithGain(pDest, pSrc1, gain1, pSrc3, gain3, numSamples);
return;
} else if (gain3 == CSAMPLE_GAIN_ZERO) {
add2WithGain(pDest, pSrc1, gain1, pSrc2, gain2, numSamples);
return;
}
// note: LOOP VECTORIZED.
for (SINT i = 0; i < numSamples; ++i) {
pDest[i] += pSrc1[i] * gain1 + pSrc2[i] * gain2 + pSrc3[i] * gain3;
}
}
// static
void SampleUtil::copyWithGain(CSAMPLE* M_RESTRICT pDest,
const CSAMPLE* M_RESTRICT pSrc,
CSAMPLE_GAIN gain, SINT numSamples) {
if (gain == CSAMPLE_GAIN_ONE) {
copy(pDest, pSrc, numSamples);
return;
}
if (gain == CSAMPLE_GAIN_ZERO) {
clear(pDest, numSamples);
return;
}
// note: LOOP VECTORIZED.
for (SINT i = 0; i < numSamples; ++i) {
pDest[i] = pSrc[i] * gain;
}
// OR! need to test which fares better
// copy(pDest, pSrc, iNumSamples);
// applyGain(pDest, gain);
}
// static
void SampleUtil::copyWithRampingGain(CSAMPLE* M_RESTRICT pDest,
const CSAMPLE* M_RESTRICT pSrc,
CSAMPLE_GAIN old_gain,
CSAMPLE_GAIN new_gain,
SINT numSamples) {
if (old_gain == CSAMPLE_GAIN_ONE && new_gain == CSAMPLE_GAIN_ONE) {
copy(pDest, pSrc, numSamples);
return;
}
if (old_gain == CSAMPLE_GAIN_ZERO && new_gain == CSAMPLE_GAIN_ZERO) {
clear(pDest, numSamples);
return;
}
const CSAMPLE_GAIN gain_delta = (new_gain - old_gain)
/ CSAMPLE_GAIN(numSamples / 2);
if (gain_delta != 0) {
const CSAMPLE_GAIN start_gain = old_gain + gain_delta;
// note: LOOP VECTORIZED only with "int i" (not SINT i)
for (int i = 0; i < numSamples / 2; ++i) {
const CSAMPLE_GAIN gain = start_gain + gain_delta * i;
pDest[i * 2] = pSrc[i * 2] * gain;
pDest[i * 2 + 1] = pSrc[i * 2 + 1] * gain;
}
} else {
// note: LOOP VECTORIZED.
for (SINT i = 0; i < numSamples; ++i) {
pDest[i] = pSrc[i] * old_gain;
}
}
// OR! need to test which fares better
// copy(pDest, pSrc, iNumSamples);
// applyRampingGain(pDest, gain);
}
// static
void SampleUtil::convertS16ToFloat32(CSAMPLE* M_RESTRICT pDest,
const SAMPLE* M_RESTRICT pSrc, SINT numSamples) {
// SAMPLE_MIN = -32768 is a valid low sample, whereas SAMPLE_MAX = 32767
// is the highest valid sample. Note that this means that although some
// sample values convert to -1.0, none will convert to +1.0.
DEBUG_ASSERT(-SAMPLE_MINIMUM >= SAMPLE_MAXIMUM);
const CSAMPLE kConversionFactor = SAMPLE_MINIMUM * -1.0f;
// note: LOOP VECTORIZED.
for (SINT i = 0; i < numSamples; ++i) {
pDest[i] = CSAMPLE(pSrc[i]) / kConversionFactor;
}
}
//static
void SampleUtil::convertFloat32ToS16(SAMPLE* pDest, const CSAMPLE* pSrc,
SINT numSamples) {
// We use here -SAMPLE_MINIMUM for a perfect round trip with convertS16ToFloat32
// +1.0 is clamped to 32767 (0.99996942)
DEBUG_ASSERT(-SAMPLE_MINIMUM >= SAMPLE_MAXIMUM);
const CSAMPLE kConversionFactor = SAMPLE_MINIMUM * -1.0f;
// note: LOOP VECTORIZED only with "int i" (not SINT i)
for (int i = 0; i < numSamples; ++i) {
pDest[i] = static_cast<SAMPLE>(math_clamp(pSrc[i] * kConversionFactor,
static_cast<CSAMPLE>(SAMPLE_MINIMUM),
static_cast<CSAMPLE>(SAMPLE_MAXIMUM)));
}
}
// static
SampleUtil::CLIP_STATUS SampleUtil::sumAbsPerChannel(CSAMPLE* pfAbsL,
CSAMPLE* pfAbsR, const CSAMPLE* pBuffer, SINT numSamples) {
CSAMPLE fAbsL = CSAMPLE_ZERO;
CSAMPLE fAbsR = CSAMPLE_ZERO;
CSAMPLE clippedL = 0;
CSAMPLE clippedR = 0;
// note: LOOP VECTORIZED.
for (SINT i = 0; i < numSamples / 2; ++i) {
CSAMPLE absl = fabs(pBuffer[i * 2]);
fAbsL += absl;
clippedL += absl > CSAMPLE_PEAK ? 1 : 0;
CSAMPLE absr = fabs(pBuffer[i * 2 + 1]);
fAbsR += absr;
// Replacing the code with a bool clipped will prevent vetorizing
clippedR += absr > CSAMPLE_PEAK ? 1 : 0;
}
*pfAbsL = fAbsL;
*pfAbsR = fAbsR;
SampleUtil::CLIP_STATUS clipping = SampleUtil::NO_CLIPPING;
if (clippedL > 0) {
clipping |= SampleUtil::CLIPPING_LEFT;
}
if (clippedR > 0) {
clipping |= SampleUtil::CLIPPING_RIGHT;
}
return clipping;
}
// static
void SampleUtil::copyClampBuffer(CSAMPLE* M_RESTRICT pDest,
const CSAMPLE* M_RESTRICT pSrc, SINT iNumSamples) {
// note: LOOP VECTORIZED.
for (SINT i = 0; i < iNumSamples; ++i) {
pDest[i] = clampSample(pSrc[i]);
}
}
// static
void SampleUtil::interleaveBuffer(CSAMPLE* M_RESTRICT pDest,
const CSAMPLE* M_RESTRICT pSrc1,
const CSAMPLE* M_RESTRICT pSrc2,
SINT numFrames) {
// note: LOOP VECTORIZED.
for (SINT i = 0; i < numFrames; ++i) {
pDest[2 * i] = pSrc1[i];
pDest[2 * i + 1] = pSrc2[i];
}
}
// static
void SampleUtil::deinterleaveBuffer(CSAMPLE* M_RESTRICT pDest1,
CSAMPLE* M_RESTRICT pDest2,
const CSAMPLE* M_RESTRICT pSrc,
SINT numFrames) {
// note: LOOP VECTORIZED.
for (SINT i = 0; i < numFrames; ++i) {
pDest1[i] = pSrc[i * 2];
pDest2[i] = pSrc[i * 2 + 1];
}
}
// static
void SampleUtil::linearCrossfadeBuffersOut(
CSAMPLE* M_RESTRICT pDestSrcFadeOut,
const CSAMPLE* M_RESTRICT pSrcFadeIn,
SINT numSamples) {
// M_RESTRICT unoptimizes the function for some reason.
const CSAMPLE_GAIN cross_inc = CSAMPLE_GAIN_ONE
/ CSAMPLE_GAIN(numSamples / 2);
// note: LOOP VECTORIZED only with "int i" (not SINT i)
for (int i = 0; i < numSamples / 2; ++i) {
const CSAMPLE_GAIN cross_mix = cross_inc * i;
pDestSrcFadeOut[i * 2] *= (CSAMPLE_GAIN_ONE - cross_mix);
pDestSrcFadeOut[i * 2] += pSrcFadeIn[i * 2] * cross_mix;
}
// note: LOOP VECTORIZED only with "int i" (not SINT i)
for (int i = 0; i < numSamples / 2; ++i) {
const CSAMPLE_GAIN cross_mix = cross_inc * i;
pDestSrcFadeOut[i * 2 + 1] *= (CSAMPLE_GAIN_ONE - cross_mix);
pDestSrcFadeOut[i * 2 + 1] += pSrcFadeIn[i * 2 + 1] * cross_mix;
}
}
// static
void SampleUtil::linearCrossfadeBuffersIn(
CSAMPLE* M_RESTRICT pDestSrcFadeIn,
const CSAMPLE* M_RESTRICT pSrcFadeOut,
SINT numSamples) {
// M_RESTRICT unoptimizes the function for some reason.
const CSAMPLE_GAIN cross_inc = CSAMPLE_GAIN_ONE / CSAMPLE_GAIN(numSamples / 2);
/// note: LOOP VECTORIZED only with "int i" (not SINT i)
for (int i = 0; i < numSamples / 2; ++i) {
const CSAMPLE_GAIN cross_mix = cross_inc * i;
pDestSrcFadeIn[i * 2] *= cross_mix;
pDestSrcFadeIn[i * 2] += pSrcFadeOut[i * 2] * (CSAMPLE_GAIN_ONE - cross_mix);
}
// note: LOOP VECTORIZED only with "int i" (not SINT i)
for (int i = 0; i < numSamples / 2; ++i) {
const CSAMPLE_GAIN cross_mix = cross_inc * i;
pDestSrcFadeIn[i * 2 + 1] *= cross_mix;
pDestSrcFadeIn[i * 2 + 1] += pSrcFadeOut[i * 2 + 1] * (CSAMPLE_GAIN_ONE - cross_mix);
}
}
// static
void SampleUtil::mixStereoToMono(CSAMPLE* M_RESTRICT pDest,
const CSAMPLE* M_RESTRICT pSrc,
SINT numSamples) {
const CSAMPLE_GAIN mixScale = CSAMPLE_GAIN_ONE
/ (CSAMPLE_GAIN_ONE + CSAMPLE_GAIN_ONE);
// note: LOOP VECTORIZED
for (SINT i = 0; i < numSamples / 2; ++i) {
pDest[i * 2] = (pSrc[i * 2] + pSrc[i * 2 + 1]) * mixScale;
pDest[i * 2 + 1] = pDest[i * 2];
}
}
// static
void SampleUtil::mixStereoToMono(CSAMPLE* pBuffer, SINT numSamples) {
const CSAMPLE_GAIN mixScale = CSAMPLE_GAIN_ONE / (CSAMPLE_GAIN_ONE + CSAMPLE_GAIN_ONE);
// note: LOOP VECTORIZED
for (SINT i = 0; i < numSamples / 2; ++i) {
pBuffer[i * 2] = (pBuffer[i * 2] + pBuffer[i * 2 + 1]) * mixScale;
pBuffer[i * 2 + 1] = pBuffer[i * 2];
}
}
// static
void SampleUtil::doubleMonoToDualMono(CSAMPLE* pBuffer, SINT numFrames) {
// backward loop
SINT i = numFrames;
// not vectorized: vector version will never be profitable.
while (0 < i--) {
const CSAMPLE s = pBuffer[i];
pBuffer[i * 2] = s;
pBuffer[i * 2 + 1] = s;
}
}
// static
void SampleUtil::copyMonoToDualMono(CSAMPLE* M_RESTRICT pDest,
const CSAMPLE* M_RESTRICT pSrc, SINT numFrames) {
// forward loop
// note: LOOP VECTORIZED
for (SINT i = 0; i < numFrames; ++i) {
const CSAMPLE s = pSrc[i];
pDest[i * 2] = s;
pDest[i * 2 + 1] = s;
}
}
// static
void SampleUtil::addMonoToStereo(CSAMPLE* M_RESTRICT pDest,
const CSAMPLE* M_RESTRICT pSrc, SINT numFrames) {
// forward loop
// note: LOOP VECTORIZED
for (SINT i = 0; i < numFrames; ++i) {
const CSAMPLE s = pSrc[i];
pDest[i * 2] += s;
pDest[i * 2 + 1] += s;
}
}
// static
void SampleUtil::stripMultiToStereo(
CSAMPLE* pBuffer,
SINT numFrames,
int numChannels) {
DEBUG_ASSERT(numChannels > 2);
// forward loop
for (SINT i = 0; i < numFrames; ++i) {
pBuffer[i * 2] = pBuffer[i * numChannels];
pBuffer[i * 2 + 1] = pBuffer[i * numChannels + 1];
}
}
// static
void SampleUtil::copyMultiToStereo(
CSAMPLE* M_RESTRICT pDest,
const CSAMPLE* M_RESTRICT pSrc,
SINT numFrames,
int numChannels) {
DEBUG_ASSERT(numChannels > 2);
// forward loop
for (SINT i = 0; i < numFrames; ++i) {
pDest[i * 2] = pSrc[i * numChannels];
pDest[i * 2 + 1] = pSrc[i * numChannels + 1];
}
}
// static
void SampleUtil::reverse(CSAMPLE* pBuffer, SINT numSamples) {
for (SINT j = 0; j < numSamples / 4; ++j) {
const SINT endpos = (numSamples - 1) - j * 2 ;
CSAMPLE temp1 = pBuffer[j * 2];
CSAMPLE temp2 = pBuffer[j * 2 + 1];
pBuffer[j * 2] = pBuffer[endpos - 1];
pBuffer[j * 2 + 1] = pBuffer[endpos];
pBuffer[endpos - 1] = temp1;
pBuffer[endpos] = temp2;
}
}
// static
void SampleUtil::copyReverse(CSAMPLE* M_RESTRICT pDest,
const CSAMPLE* M_RESTRICT pSrc, SINT numSamples) {
for (SINT j = 0; j < numSamples / 2; ++j) {
const int endpos = (numSamples - 1) - j * 2;
pDest[j * 2] = pSrc[endpos - 1];
pDest[j * 2 + 1] = pSrc[endpos];
}
}