forked from tensorflow/hub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
saved_model_module_test.py
67 lines (53 loc) · 2.09 KB
/
saved_model_module_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright 2018 The TensorFlow Hub Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow_hub.saved_model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tensorflow as tf
import tensorflow_hub as hub
from tensorflow_hub import tf_v1
_EXTRA_COLLECTION = "exercise_drop_collection"
class SavedModelTest(tf.test.TestCase):
def createSavedModel(self):
model_dir = os.path.join(self.get_temp_dir(), "saved_model")
with tf.Graph().as_default():
x = tf_v1.placeholder(dtype=tf.float32, shape=[None, 3])
w = tf_v1.get_variable("weights", shape=[])
y = x*w
tf_v1.add_to_collection(_EXTRA_COLLECTION, y)
init_op = tf_v1.assign(w, 2)
with tf_v1.Session() as session:
session.run(init_op)
tf_v1.saved_model.simple_save(
session,
model_dir,
inputs={"x": x},
outputs={"y": y},
)
return model_dir
def testLoadSavedModel(self):
saved_model_path = self.createSavedModel()
spec = hub.create_module_spec_from_saved_model(
saved_model_path,
drop_collections=[_EXTRA_COLLECTION])
with tf.Graph().as_default():
m = hub.Module(spec, tags=["serve"])
y = m([[2, 4, 5]], signature="serving_default", as_dict=True)["y"]
with tf_v1.train.MonitoredSession() as session:
self.assertAllEqual(session.run(y), [[4, 8, 10]])
if __name__ == "__main__":
tf.test.main()