This repository has been archived by the owner on Jul 4, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathhelpers.py
176 lines (132 loc) · 5.55 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from datapoint import DataPoint
from fusionekf import FusionEKF
def parse_data(file_path):
"""
Args:
file_path
- path to a text file with all data.
- each line should have the following format:
[SENSOR ID] [SENSOR RAW VALUES] [TIMESTAMP] [GROUND TRUTH VALUES]
Whereas radar has three measurements (rho, phi, rhodot), lidar has two measurements (x, y).
Specifically:
For a row containing radar data, the columns are:
sensor_type, rho_measured, phi_measured, rhodot_measured, timestamp, x_groundtruth, y_groundtruth, vx_groundtruth, vy_groundtruth
For a row containing lidar data, the columns are:
sensor_type, x_measured, y_measured, timestamp, x_groundtruth, y_groundtruth, vx_groundtruth, vy_groundtruth
Example 1:
line with three measurements from a radar sensor in polar coordinate
followed by a timestamp in unix time
followed by the the "ground truth" which is
actual real position and velocity in cartesian coordinates (four state variables)
R 8.46642 0.0287602 -3.04035 1477010443399637 8.6 0.25 -3.00029 0
(R) (rho) (phi) (drho) (timestamp) (real x) (real y) (real vx) (real vy)
Example 2:
line with two measurements from a lidar sensor in cartesian coordinates
followed by a timestamp in unix time
followed by the the "ground truth" which is
the actual real position and velocity in cartesian coordinates (four state variables)
L 8.44818 0.251553 1477010443449633 8.45 0.25 -3.00027 0
Returns:
all_sensor_data, all_ground_truths
- two lists of DataPoint() instances
"""
all_sensor_data = []
all_ground_truths = []
with open(file_path) as f:
for line in f:
data = line.split()
if data[0] == 'L':
sensor_data = DataPoint({
'timestamp': int(data[3]),
'name': 'lidar',
'x': float(data[1]),
'y': float(data[2])
})
g = {'timestamp': int(data[3]),
'name': 'state',
'x': float(data[4]),
'y': float(data[5]),
'vx': float(data[6]),
'vy': float(data[7])
}
ground_truth = DataPoint(g)
elif data[0] == 'R':
sensor_data = DataPoint({
'timestamp': int(data[4]),
'name': 'radar',
'rho': float(data[1]),
'phi': float(data[2]),
'drho': float(data[3])
})
g = {'timestamp': int(data[4]),
'name': 'state',
'x': float(data[5]),
'y': float(data[6]),
'vx': float(data[7]),
'vy': float(data[8])
}
ground_truth = DataPoint(g)
all_sensor_data.append(sensor_data)
all_ground_truths.append(ground_truth)
return all_sensor_data, all_ground_truths
def get_state_estimations(EKF, all_sensor_data):
"""
Calculates all state estimations given a FusionEKF instance() and sensor measurements
Args:
EKF - an instance of a FusionEKF() class
all_sensor_data - a list of sensor measurements as a DataPoint() instance
Returns:
all_state_estimations
- a list of all state estimations as predicted by the EKF instance
- each state estimation is wrapped in DataPoint() instance
"""
all_state_estimations = []
for data in all_sensor_data:
EKF.process(data)
x = EKF.get()
px, py, vx, vy = x[0, 0], x[1, 0], x[2, 0], x[3, 0]
g = {'timestamp': data.get_timestamp(),
'name': 'state',
'x': px,
'y': py,
'vx': vx,
'vy': vy }
state_estimation = DataPoint(g)
all_state_estimations.append(state_estimation)
return all_state_estimations
def print_EKF_data(all_sensor_data, all_ground_truths, all_state_estimations, RMSE):
"""
Prints all relevant EKF data in a nice formal
Args:
all_sensor_data
- a list of sensor measurements as DataPoint() instances
all_state_estimations
- a list of state estimations as DataPoint() instances
all_ground_truths
- a list of ground truths as DataPoint instances
RMSE
- a list of the four computed root-mean-square error of the four state variables considered
Returns: None
"""
px, py, vx, vy = RMSE
print("-----------------------------------------------------------")
print('{:10s} | {:8.3f} | {:8.3f} | {:8.3f} | {:8.3f} |'.format("RMSE:", px, py, vx, vy))
print("-----------------------------------------------------------")
print("NUMBER OF DATA POINTS:", len(all_sensor_data))
print("-----------------------------------------------------------")
i = 1
for s, p, t in zip(all_sensor_data, all_state_estimations, all_ground_truths):
print("-----------------------------------------------------------")
print("#", i, ":", s.get_timestamp())
print("-----------------------------------------------------------")
if s.get_name() == 'lidar':
x, y = s.get_raw()
print('{:15s} | {:8.3f} | {:8.3f} |'.format("LIDAR:", x, y))
else:
rho, phi, drho = s.get_raw()
print('{:15s} | {:8.3f} | {:8.3f} | {:8.3f} |'.format("RADAR:", rho, phi, drho))
x, y, vx, vy = p.get()
print('{:15s} | {:8.3f} | {:8.3f} | {:8.3f} | {:8.3f} |'.format("PREDICTION:", x, y, x, y))
x, y, vx, vy = t.get()
print('{:15s} | {:8.3f} | {:8.3f} | {:8.3f} | {:8.3f} |'.format("TRUTH:", x, y, x, y))
i += 1