-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathfid.py
73 lines (56 loc) · 2.59 KB
/
fid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import numpy as np
import torch
from torchmetrics.image.fid import FrechetInceptionDistance
from torchmetrics.image.kid import KernelInceptionDistance
from torchmetrics.utilities.data import dim_zero_cat
from PIL import Image
import torchvision.transforms as TF
from tqdm import tqdm
import json
import os
def load_frame_path_from_dir(datadir,select_frame=100):
dir_list = [os.path.join(datadir,video_path) for video_path in os.listdir(datadir)]
all_files=[]
for dir in dir_list:
files=[os.path.join(dir, f) for f in os.listdir(dir)]
files.sort()
if len(files)>select_frame:
files=[files[i] for i in np.linspace(0,len(files)-1,select_frame).astype(int)]
all_files+=files
return all_files
def EvaluateFID(store_image_folder, store_gt_image_folder, ckpt_path, device):
fid_image_transforms=TF.Compose([
TF.Resize((299,299)),
# TF.CenterCrop(299),
TF.ToTensor(),
TF.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
store_image_folder_files = load_frame_path_from_dir(store_image_folder)
image_dataset=[]
for image_path_i in store_image_folder_files:
img = Image.open(image_path_i).convert('RGB')
image_dataset.append(fid_image_transforms(img).unsqueeze(0).to(device))
# image_dataset=torch.concat(image_dataset).to(device)
store_gt_image_folder_files = load_frame_path_from_dir(store_gt_image_folder)
gt_image_dataset=[]
for image_path_i in store_gt_image_folder_files:
img = Image.open(image_path_i).convert('RGB')
gt_image_dataset.append(fid_image_transforms(img).unsqueeze(0).to(device))
# gt_image_dataset=torch.concat(gt_image_dataset).to(device)
fid_model=FrechetInceptionDistance(normalize=True).to(device)
with torch.no_grad():
for gt_image_tensor in gt_image_dataset:
fid_model.update(gt_image_tensor,real=True)
for image_tensor in image_dataset:
fid_model.update(image_tensor,real=False)
fid_score=fid_model.compute()
kid_model = KernelInceptionDistance(normalize=True, subset_size=100).to(device)
with torch.no_grad():
for gt_image_tensor in gt_image_dataset:
kid_model.update(gt_image_tensor, real=True)
for image_tensor in image_dataset:
kid_model.update(image_tensor, real=False)
if dim_zero_cat(kid_model.fake_features).shape[0]<kid_model.subset_size:
raise Exception("kid subset size is too big!")
kid_score=kid_model.compute()
return fid_score.item(), kid_score[0].item()