-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
35 lines (27 loc) · 1.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from transformers import T5ForConditionalGeneration, T5Tokenizer
import torch
# Load a pre-trained model
model = T5ForConditionalGeneration.from_pretrained('t5-small')
tokenizer = T5Tokenizer.from_pretrained('t5-small')
# Function to fine-tune T5 model with new feedback data
def fine_tune_model(feedback_texts, summaries):
inputs = tokenizer(feedback_texts, return_tensors='pt', padding=True, truncation=True)
labels = tokenizer(summaries, return_tensors='pt', padding=True, truncation=True)
model.train()
# Optimizer and loss
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5)
loss_fn = torch.nn.CrossEntropyLoss()
# Fine-tuning loop (simplified)
for epoch in range(3): # Adjust epoch as needed
optimizer.zero_grad()
outputs = model(input_ids=inputs.input_ids, labels=labels.input_ids)
loss = outputs.loss
loss.backward()
optimizer.step()
# Save the fine-tuned model
model.save_pretrained('./fine-tuned-model')
tokenizer.save_pretrained('./fine-tuned-model')
# Example call to fine-tune the model
feedback_data = ["Employee is dissatisfied with project deadlines.", "Manager is doing great work!"]
summaries = ["Dissatisfaction with deadlines", "Positive feedback for manager"]
fine_tune_model(feedback_data, summaries)