Skip to content

mingkai-zheng/GENIUS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Can GPT-4 Perform Neural Architecture Search?

For details, see Paper Link by Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen Qian, Chang Xu, and Samuel Albanie.

Retrieve Performance From Benchmark

* NAS-Bench-Macro

python get_performance.py --benchmark nas-macro --arch xxxxxxxx

xxxxxxxx is 8 numbers (e.g. 01201201) which representes the operation for each layer. There are three different choices for each layer, you can use [0, 1, 2] to represents the operations. The details and avialable operations can be found in prompt/nas-bench-macro.md

* Channel-Bench-Macro

python get_performance.py --benchmark channel-res --arch 'xx, xx, xx, xx, xx, xx, xx'
python get_performance.py --benchmark channel-mob --arch 'xx, xx, xx, xx, xx, xx, xx'

Use channel-res for ResNet base model and channel-mob for MobileNet base model. xx represents the channel numers of each layer. You can find the details for the avialable channel numbers in prompt/channel-bench-resnet.md and prompt/channel-bench-mobilenet.md

* NAS-Bench-201

python get_performance.py --benchmark 201-cifar10  --arch xxxxxx
python get_performance.py --benchmark 201-cifar100 --arch xxxxxx
python get_performance.py --benchmark 201-imagenet --arch xxxxxx

Use 201-cifar10, 201-cifar100, and 201-imagenet for CIFA10, CIFAR100, and ImageNet16-120 respectively. xxxxxx is 6 numbers (e.g. 213401) which representes the operation for each edge. There are three different choices for each layer, you can use [0, 1, 2, 3, 4] to represents the operations. The details and avialable operations can be found in prompt/nas-bench-201.md

About

Can GPT-4 Perform Neural Architecture Search?

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published