-
Notifications
You must be signed in to change notification settings - Fork 344
/
mallet.bat
executable file
·74 lines (56 loc) · 2.96 KB
/
mallet.bat
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
@echo off
rem This batch file serves as a wrapper for several
rem MALLET command line tools.
if not "%MALLET_HOME%" == "" goto gotMalletHome
echo MALLET requires an environment variable MALLET_HOME.
goto :eof
:gotMalletHome
set MALLET_CLASSPATH=%MALLET_HOME%\class;%MALLET_HOME%\lib\mallet-deps.jar
set MALLET_MEMORY=1G
set MALLET_ENCODING=UTF-8
set CMD=%1
shift
set CLASS=
if "%CMD%"=="import-dir" set CLASS=cc.mallet.classify.tui.Text2Vectors
if "%CMD%"=="import-file" set CLASS=cc.mallet.classify.tui.Csv2Vectors
if "%CMD%"=="import-svmlight" set CLASS=cc.mallet.classify.tui.SvmLight2Vectors
if "%CMD%"=="info" set CLASS=cc.mallet.classify.tui.Vectors2Info
if "%CMD%"=="train-classifier" set CLASS=cc.mallet.classify.tui.Vectors2Classify
if "%CMD%"=="classify-dir" set CLASS=cc.mallet.classify.tui.Text2Classify
if "%CMD%"=="classify-file" set CLASS=cc.mallet.classify.tui.Csv2Classify
if "%CMD%"=="classify-svmlight" set CLASS=cc.mallet.classify.tui.SvmLight2Classify
if "%CMD%"=="train-topics" set CLASS=cc.mallet.topics.tui.TopicTrainer
if "%CMD%"=="infer-topics" set CLASS=cc.mallet.topics.tui.InferTopics
if "%CMD%"=="evaluate-topics" set CLASS=cc.mallet.topics.tui.EvaluateTopics
if "%CMD%"=="prune" set CLASS=cc.mallet.classify.tui.Vectors2Vectors
if "%CMD%"=="split" set CLASS=cc.mallet.classify.tui.Vectors2Vectors
if "%CMD%"=="bulk-load" set CLASS=cc.mallet.util.BulkLoader
if "%CMD%"=="run" set CLASS=%1 & shift
if not "%CLASS%" == "" goto gotClass
echo Mallet 2.0 commands:
echo import-dir load the contents of a directory into mallet instances (one per file)
echo import-file load a single file into mallet instances (one per line)
echo import-svmlight load a single SVMLight format data file into mallet instances (one per line)
echo info get information about Mallet instances
echo train-classifier train a classifier from Mallet data files
echo classify-dir classify the contents of a directory with a saved classifier
echo classify-file classify data from a single file with a saved classifier
echo classify-svmlight classify data from a single file in SVMLight format
echo train-topics train a topic model from Mallet data files
echo infer-topics use a trained topic model to infer topics for new documents
echo evaluate-topics estimate the probability of new documents given a trained model
echo prune remove features based on frequency or information gain
echo split divide data into testing, training, and validation portions
echo bulk-load for big input files, efficiently prune vocabulary and import docs
echo Include --help with any option for more information
goto :eof
:gotClass
set MALLET_ARGS=
:getArg
if "%1"=="" goto run
set MALLET_ARGS=%MALLET_ARGS% %1
shift
goto getArg
:run
java -Xmx%MALLET_MEMORY% -ea -Dfile.encoding=%MALLET_ENCODING% -classpath %MALLET_CLASSPATH% %CLASS% %MALLET_ARGS%
:eof