-
Notifications
You must be signed in to change notification settings - Fork 344
/
mallet
executable file
·60 lines (49 loc) · 2.33 KB
/
mallet
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/bin/bash
malletdir=`dirname $0`
malletdir=`dirname $malletdir`
cp=$malletdir/class:$malletdir/lib/mallet-deps.jar:$CLASSPATH
#echo $cp
MEMORY="${MALLET_MEMORY:-1g}"
CMD=$1
shift
help()
{
cat <<EOF
Mallet 2.0 commands:
import-dir load the contents of a directory into mallet instances (one per file)
import-file load a single file into mallet instances (one per line)
import-svmlight load SVMLight format data files into Mallet instances
info get information about Mallet instances
train-classifier train a classifier from Mallet data files
classify-dir classify the contents of a directory with a saved classifier
classify-file classify data from a single file with a saved classifier
classify-svmlight classify data from a single file in SVMLight format
train-topics train a topic model from Mallet data files
infer-topics use a trained topic model to infer topics for new documents
evaluate-topics estimate the probability of new documents under a trained model
prune remove features based on frequency or information gain
split divide data into testing, training, and validation portions
bulk-load for big input files, efficiently prune vocabulary and import docs
Include --help with any option for more information
EOF
}
CLASS=
case $CMD in
import-dir) CLASS=cc.mallet.classify.tui.Text2Vectors;;
import-file) CLASS=cc.mallet.classify.tui.Csv2Vectors;;
import-svmlight) CLASS=cc.mallet.classify.tui.SvmLight2Vectors;;
info) CLASS=cc.mallet.classify.tui.Vectors2Info;;
train-classifier) CLASS=cc.mallet.classify.tui.Vectors2Classify;;
classify-dir) CLASS=cc.mallet.classify.tui.Text2Classify;;
classify-file) CLASS=cc.mallet.classify.tui.Csv2Classify;;
classify-svmlight) CLASS=cc.mallet.classify.tui.SvmLight2Classify;;
train-topics) CLASS=cc.mallet.topics.tui.TopicTrainer;;
infer-topics) CLASS=cc.mallet.topics.tui.InferTopics;;
evaluate-topics) CLASS=cc.mallet.topics.tui.EvaluateTopics;;
prune) CLASS=cc.mallet.classify.tui.Vectors2Vectors;;
split) CLASS=cc.mallet.classify.tui.Vectors2Vectors;;
bulk-load) CLASS=cc.mallet.util.BulkLoader;;
run) CLASS=$1; shift;;
*) echo "Unrecognized command: $CMD"; help; exit 1;;
esac
java -Xmx$MEMORY -ea -Djava.awt.headless=true -Dfile.encoding=UTF-8 -server -classpath "$cp" $CLASS "$@"