-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
145 lines (116 loc) · 5.06 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.applications import vgg16
AUTOTUNE = tf.data.experimental.AUTOTUNE
def deprocess(img):
return img * 127.5 + 127.5
def train_convert(file_path):
img = tf.io.read_file(file_path)
img = tf.image.decode_jpeg(img, channels=3)
img = tf.image.resize(img, [256, 256])
img = tf.image.random_flip_left_right(img)
img = (img - 127.5) / 127.5
return img
def create_train_ds(train_dir, batch_size, seed=15):
img_paths = tf.data.Dataset.list_files(str(train_dir))
BUFFER_SIZE = tf.data.experimental.cardinality(img_paths)
img_paths = img_paths.cache().shuffle(BUFFER_SIZE, seed=seed)
ds = img_paths.map(train_convert, num_parallel_calls=AUTOTUNE).batch(
batch_size, drop_remainder=True, num_parallel_calls=AUTOTUNE).prefetch(
AUTOTUNE)
print('Train dataset size: {}'.format(BUFFER_SIZE))
print('Batches: {}'.format(tf.data.experimental.cardinality(ds)))
return ds
def save_generator_img(model, epoch, noise, direct, plot_size=15):
predictions = model(noise, training=False)
predictions = tf.clip_by_value(deprocess(predictions[0]), 0, 255)
predictions = tf.cast(predictions, tf.uint8)
fig = plt.figure(figsize=(plot_size, plot_size))
for i in range(predictions.shape[0]):
plt.subplot(8, 8, i+1)
plt.imshow(predictions[i, :, :, :])
plt.axis('off')
plt.subplots_adjust(wspace=0, hspace=0, left=0, right=1, bottom=0, top=1)
path = os.path.join(direct, '{:04d}.png'.format(epoch))
plt.savefig(path)
# Clear the current axes.
plt.cla()
# Clear the current figure.
plt.clf()
# Closes all the figure windows.
plt.close('all')
def save_decoder_img(model, epoch, img, direct, plot_size=6):
predictions = model(img, decode=True)
predictions = tf.clip_by_value(deprocess(predictions[1]), 0, 255)
predictions = tf.cast(predictions, tf.uint8)
fig = plt.figure(figsize=(plot_size, plot_size))
for i in range(predictions.shape[0]):
plt.subplot(4, 4, i+1)
plt.imshow(predictions[i, :, :, :])
plt.axis('off')
plt.subplots_adjust(wspace=0, hspace=0, left=0, right=1, bottom=0, top=1)
path = os.path.join(direct, '{:04d}.png'.format(epoch))
plt.savefig(path)
# Clear the current axes.
plt.cla()
# Clear the current figure.
plt.clf()
# Closes all the figure windows.
plt.close('all')
def get_loss(loss):
if loss == 'bce':
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_img, fake_img):
real_loss = cross_entropy(tf.ones_like(real_img), real_img)
fake_loss = cross_entropy(tf.zeros_like(fake_img), fake_img)
return real_loss + fake_loss
def generator_loss(fake_img):
return cross_entropy(tf.ones_like(fake_img), fake_img)
return generator_loss, discriminator_loss
elif loss == 'hinge':
def d_real_loss(logits):
return tf.reduce_mean(tf.nn.relu(1.0 - logits))
def d_fake_loss(logits):
return tf.reduce_mean(tf.nn.relu(1.0 + logits))
def discriminator_loss(real_img, fake_img):
real_loss = d_real_loss(real_img)
fake_loss = d_fake_loss(fake_img)
return fake_loss + real_loss
def generator_loss(fake_img):
return -tf.reduce_mean(fake_img)
return generator_loss, discriminator_loss
elif loss == 'wgan':
def discriminator_loss(real_img, fake_img):
real_loss = tf.reduce_mean(real_img)
fake_loss = tf.reduce_mean(fake_img)
return fake_loss - real_loss
def generator_loss(fake_img):
return -tf.reduce_mean(fake_img)
return generator_loss, discriminator_loss
class LossNetwork(tf.keras.models.Model):
def __init__(self, input_size=128,
content_layers = ['block1_conv2',
'block2_conv2',
'block3_conv3'],
):
super(LossNetwork, self).__init__()
self.res = layers.experimental.preprocessing.Resizing(input_size, input_size)
vgg = vgg16.VGG16(include_top=False, weights='imagenet')
vgg.trainable = False
model_outputs = [vgg.get_layer(name).output for name in content_layers]
self.model = tf.keras.models.Model(vgg.input, model_outputs)
self.linear = layers.Activation('linear', dtype='float32')
def call(self, real_img, rec_img):
real_img = deprocess(real_img)
real_img = self.res(real_img)
real_img = vgg16.preprocess_input(real_img)
real_maps = self.model(real_img)
rec_img = deprocess(rec_img)
rec_img = self.res(rec_img)
rec_img = vgg16.preprocess_input(rec_img)
rec_maps = self.model(rec_img)
loss = tf.add_n([tf.reduce_mean(tf.keras.losses.MAE(real, rec))
for real, rec in zip(real_maps, rec_maps)])
return loss