近期要读的2017年顶会的几篇行为识别论文
Wu C Y, Zaheer M, Hu H, et al. Compressed Video Action Recognition[J].
arXiv preprint arXiv:1712.00636, 2017.
- 压缩视频,去除冗余信息
Sigurdsson G A, Russakovsky O, Gupta A. What Actions are Needed for Understanding Human Actions in Videos?[J].
arXiv preprint arXiv:1708.02696, 2017.(ICCV2017)
- 在charades数据集上,测试了几种传统方法的效果
Sigurdsson G A, Varol G, Wang X, et al. Hollywood in homes: Crowdsourcing data collection for activity understanding[C]//European Conference on Computer Vision.
Springer International Publishing, 2016: 510-526.(ECCV2016)
- 提出了charades数据集
Carreira J, Zisserman A. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset[J].
arXiv preprint arXiv:1705.07750, 2017.(CVPR2017)
- 提出了I3D模型,2017年在ucf101,hmdb51两个数据集达到了state of the art 的结果:80.7% on HMDB-51 and 98.0% on UCF-101
Girdhar R, Ramanan D. Attentional pooling for action recognition[C]
//Advances in Neural Information Processing Systems. 2017: 33-44.(NIPS2017)
- 结合注意力系统的行为识别模型
Hara K, Kataoka H, Satoh Y. Learning spatio-temporal features with 3D residual networks for action recognition[C]
//Proceedings of the ICCV Workshop on Action, Gesture, and Emotion Recognition. 2017, 2(3): 4.(ICCV2017)
Hara K, Kataoka H, Satoh Y. Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?[J].
arXiv preprint arXiv:1711.09577, 2017.
- 3d-resnet 模型
Girdhar R, Ramanan D, Gupta A, et al. ActionVLAD: Learning spatio-temporal aggregation for action classification[J].
arXiv preprint arXiv:1704.02895, 2017.(CVPR2017)
- 将VLAD与action相结合
Sigurdsson G A, Divvala S, Farhadi A, et al. Asynchronous Temporal Fields for Action Recognition[J].
arXiv preprint arXiv:1612.06371, 2016.
- 在charades数据集上的行为识别CRF模型