|
| 1 | +/*: |
| 2 | +# Find Right Interval |
| 3 | + https://leetcode.com/explore/challenge/card/august-leetcoding-challenge/552/week-4-august-22nd-august-28th/3438/ |
| 4 | + |
| 5 | + --- |
| 6 | + |
| 7 | +### Problem Statement: |
| 8 | + |
| 9 | + Given a set of intervals, for each of the interval i, check if there exists an interval j whose start point is bigger than or equal to the end point of the interval i, which can be called that j is on the "right" of i. |
| 10 | + |
| 11 | + For any interval i, you need to store the minimum interval j's index, which means that the interval j has the minimum start point to build the "right" relationship for interval i. If the interval j doesn't exist, store -1 for the interval i. Finally, you need output the stored value of each interval as an array. |
| 12 | + |
| 13 | + |
| 14 | +### Example 1: |
| 15 | + |
| 16 | + ``` |
| 17 | + Input: [ [1,2] ] |
| 18 | + Output: [-1] |
| 19 | + |
| 20 | + Explanation: There is only one interval in the collection, so it outputs -1. |
| 21 | + |
| 22 | + ``` |
| 23 | + |
| 24 | + ### Example 2: |
| 25 | + |
| 26 | + ``` |
| 27 | + Input: [ [3,4], [2,3], [1,2] ] |
| 28 | + Output: [-1, 0, 1] |
| 29 | + |
| 30 | + Explanation: There is no satisfied "right" interval for [3,4]. |
| 31 | + For [2,3], the interval [3,4] has minimum-"right" start point; |
| 32 | + For [1,2], the interval [2,3] has minimum-"right" start point. |
| 33 | + |
| 34 | + ``` |
| 35 | + |
| 36 | + ### Example 3: |
| 37 | + |
| 38 | + ``` |
| 39 | + Input: [ [1,4], [2,3], [3,4] ] |
| 40 | + |
| 41 | + Output: [-1, 2, -1] |
| 42 | + |
| 43 | + Explanation: There is no satisfied "right" interval for [1,4] and [3,4]. |
| 44 | + For [2,3], the interval [3,4] has minimum-"right" start point. |
| 45 | + |
| 46 | + ``` |
| 47 | + |
| 48 | + ### Notes: |
| 49 | + + You may assume the interval's end point is always bigger than its start point. |
| 50 | + + You may assume none of these intervals have the same start point. |
| 51 | + |
| 52 | + */ |
| 53 | + |
| 54 | + |
| 55 | +import UIKit |
| 56 | + |
| 57 | +class Solution { |
| 58 | +// 17 / 17 test cases passed. |
| 59 | +// Status: Accepted |
| 60 | +// Runtime: 3736 ms |
| 61 | +// Memory Usage: 23.2 MB |
| 62 | + |
| 63 | + func findRightInterval1(_ intervals: [[Int]]) -> [Int] { |
| 64 | + |
| 65 | + guard intervals.count > 1 else { |
| 66 | + return [-1] |
| 67 | + } |
| 68 | + |
| 69 | + let idx = intervals.enumerated().reduce(into: [Int: Int](), { $0[$1.1[0]] = $1.0 }) |
| 70 | + |
| 71 | + // Sort the interval by start point |
| 72 | + let intervals = intervals.sorted(by: { $0[0] < $1[0] }) |
| 73 | + |
| 74 | + var result = [Int](repeating: -1, count: intervals.count) |
| 75 | + |
| 76 | + for i in 0..<(intervals.count - 1) { |
| 77 | + for j in (i + 1)..<intervals.count { |
| 78 | + if intervals[j][0] >= intervals[i][1] { |
| 79 | + result[idx[intervals[i][0]]!] = idx[intervals[j][0]]! |
| 80 | + break |
| 81 | + } |
| 82 | + } |
| 83 | + } |
| 84 | + |
| 85 | + return result |
| 86 | + } |
| 87 | + |
| 88 | +// 17 / 17 test cases passed. |
| 89 | +// Status: Accepted |
| 90 | +// Runtime: 384 ms |
| 91 | +// Memory Usage: 23.3 MB |
| 92 | + |
| 93 | + // Leetcode Solution using Binary Search |
| 94 | + func findRightInterval(_ intervals: [[Int]]) -> [Int] { |
| 95 | + // 1. Create Output Array |
| 96 | + var result = Array(repeating: -1, count: intervals.count) |
| 97 | + |
| 98 | + // 2. Sort based on start time |
| 99 | + var intervals = intervals.enumerated().map { (idx, element) in |
| 100 | + return (element, idx) |
| 101 | + } |
| 102 | + intervals.sort { $0.0[0] < $1.0[0] } |
| 103 | + |
| 104 | + // 3. Perform Binary Search for Each interval |
| 105 | + for idx in 0..<intervals.count { |
| 106 | + let intervalIdx = intervals[idx].1 |
| 107 | + let interval = intervals[idx].0 |
| 108 | + let target = interval[1] |
| 109 | + |
| 110 | + var start = idx+1 |
| 111 | + var end = intervals.count - 1 |
| 112 | + while start <= end { |
| 113 | + let mid = start + (end - start) / 2 |
| 114 | + if intervals[mid].0[0] >= target { |
| 115 | + if mid == idx + 1 || intervals[mid-1].0[0] < target { |
| 116 | + result[intervalIdx] = intervals[mid].1 |
| 117 | + break |
| 118 | + } else { |
| 119 | + end = mid - 1 |
| 120 | + } |
| 121 | + } else { |
| 122 | + start = mid + 1 |
| 123 | + } |
| 124 | + } |
| 125 | + } |
| 126 | + |
| 127 | + return result |
| 128 | + } |
| 129 | + |
| 130 | +} |
| 131 | + |
| 132 | +let sol = Solution() |
| 133 | +sol.findRightInterval([[1,2]]) // [-1] |
| 134 | +//sol.findRightInterval([[3,4], [2,3], [1,2]]) // [-1,0,1] |
| 135 | +//sol.findRightInterval([[1,4], [2,3], [3,4]]) // [-1,2,-1] |
| 136 | +sol.findRightInterval([[4,5], [2,3], [1,2]]) // [-1,0,1] |
| 137 | + |
| 138 | + |
0 commit comments