-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrun_kaenzig.m
154 lines (113 loc) · 5.76 KB
/
run_kaenzig.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
clc
clear all;
close all;
% Empirical application: Kaenzig (AER, 2021)
%% Load data
% Settings
data.endo_vars = {'oil_price','oil_production','oil_inventories','world_ip','neer','ip','cpi','ffr','vxo','tot'}; % Abbreviations of endogenous variables
data.diff = [0,1,1,1,1,1,1,0,0,0]; % =1: take first differences of endogenous variable
data.iv = 'oil_surprise';
data.smpl_start = '1983M03'; % Sample start point
data.smpl_end = '2017M12'; % Sample end point
% Endogenous variables
dat_endo = load('dataQuantM'); % Endogenous variables
data.sampleDates = dat_endo.sampleDates;
data.smplStartInd = find(strcmp(data.sampleDates,data.smpl_start));
data.smplEndInd = find(strcmp(data.sampleDates,data.smpl_end));
data.Y = dat_endo.data(data.smplStartInd:data.smplEndInd,:);
% First differences
for i = 1:size(data.Y,2)
if data.diff(i) == 1
data.Y(:,i) = [NaN;12 * (data.Y(2:end,i) - data.Y(1:end-1,i))];
end
end
% IV
dat_iv=load('OilSurprisesMLog'); % IV
proxyRaw = dat_iv.oilProxiesWTIM(:,14);
data.Z = proxyRaw(data.smplStartInd:data.smplEndInd,:);
% Adjust sample
if max(data.diff) == 1
data.Y = data.Y(2:end,:);
data.Z = data.Z(2:end,:);
end
clear sampleDates dataEndo oilProxiesWTIM proxyRaw;
%% SVMA-IV inference
disp('*** SVMA-IV analysis ***');
% Preliminaries
addpath('../../functions'); % Add folder with SVMA-IV analysis functions
rng(2018); % Seed random number generator (for bootstrap)
% Estimation settings (see other optional settings in "functions/SVMAIV_estim.m")
settings = {'p', 12; % Lag length
'n_boot', 1e3; % Number of bootstrap samples
'signif', 0.1; % Significance level
'horiz', 1:48}'; % Horizons of FVR to report
% Run inference routines
[bounds, id_recov, inv_test, settings_struct] = SVMAIV_estim(data.Y, data.Z, settings{:});
%% Display pre-test for invertibility
disp('Invertibility pre-test p-value: all equations jointly');
disp(inv_test.pval.all);
disp('Invertibility pre-test p-value: each equation separately');
disp(inv_test.pval.eqns);
%% Display bounds on alpha and degree of invertibility/recoverability
% Scale parameter
disp('Bound estimates: alpha');
disp([bounds.estim.lower.alpha bounds.estim.upper.alpha]);
disp('Confidence interval: alpha');
disp([bounds.ci.lower.alpha bounds.ci.upper.alpha]);
% Degree of invertibility
disp('Bound estimates: degree of invertibility');
disp([bounds.estim.lower.R2_inv bounds.estim.upper.R2_inv]);
disp('Confidence interval: degree of invertibility');
disp([bounds.ci.lower.R2_inv bounds.ci.upper.R2_inv]);
% Degree of recoverability
disp('Bound estimates: degree of recoverability');
disp([bounds.estim.lower.R2_recov bounds.estim.upper.R2_recov]);
disp('Confidence interval: degree of recoverability');
disp([bounds.ci.lower.R2_recov bounds.ci.upper.R2_recov]);
%% Report FVR bounds
% figure
plots.xticks = 0:12:48; % X axis ticks for FVR plot
plots.titles = {'FVR of Oil Price', 'FVR of Oil Production Growth', 'FVR of Oil Inventories Growth', 'FVR of World IP Growth', 'FVR of U.S. NEER Growth', ...
'FVR of U.S. IP Growth', 'FVR of U.S. CPI Growth', 'FVR of FFR', 'FVR of VXO', 'FVR of U.S. TOT'};
plots.xlabel = 'Horizon (Months)'; % X axis label for FVR plot
plots.ylabel = ''; % Y axis label for FVR plot
mkdir('figures'); % Figure output folder
for i=1:size(data.Y,2) % For each macro variable...
% Plot bound estimates and CI for identified set
figure('Units', 'normalize', 'Position', [0.2 0.2 0.6 0.6]);
if i == 1 || i == 5
plot_band(bounds.ci.lower.FVR(:,i), bounds.ci.upper.FVR(:,i), bounds.estim.lower.FVR(:,i), bounds.estim.upper.FVR(:,i), ...
plots.titles{i}, plots.xlabel, plots.ylabel, {'Estimate of identif. set', sprintf('%d%s', 100*(1-settings_struct.signif_level), '\% conf. interval for identif. set')}, ...
'YLim', [0 1], 'XLim', [1 max(settings_struct.FVR_hor)], 'XTick', plots.xticks, 'FontSize', 18, 'TitleFontSizeMultiplier', 1.2);
else
plot_band(bounds.ci.lower.FVR(:,i), bounds.ci.upper.FVR(:,i), bounds.estim.lower.FVR(:,i), bounds.estim.upper.FVR(:,i), ...
plots.titles{i}, plots.xlabel, plots.ylabel, [], ...
'YLim', [0 1], 'XLim', [1 max(settings_struct.FVR_hor)], 'XTick', plots.xticks, 'FontSize', 18, 'TitleFontSizeMultiplier', 1.2);
end
grid on;
drawnow;
save_fig('figures', strcat('svma_kaenzig_', data.endo_vars{i}));
end
clear i;
%% SVAR-IV analysis for comparison (assumes invertibility)
disp('*** SVAR-IV analysis ***');
% Run analysis
[~, SVARIV_FVD, SVARIV_settings_struct] = SVARIV_estim(data.Y, data.Z, settings{:});
% FVD figure
for i=1:size(data.Y,2) % For each macro variable...
% Plot point estimates and CIs
figure('Units', 'normalize', 'Position', [0.2 0.2 0.6 0.6]);
if i == 1 || i == 5
plot_band(SVARIV_FVD.ci.lower(:,i), SVARIV_FVD.ci.upper(:,i), SVARIV_FVD.estim(:,i), [], ...
plots.titles{i}, plots.xlabel, plots.ylabel, {'Point estimate', sprintf('%d%s', 100*(1-SVARIV_settings_struct.signif_level), '\% conf. interval')}, ...
'YLim', [0 1], 'XLim', [1 max(SVARIV_settings_struct.FVD_hor)], 'XTick', plots.xticks, 'FontSize', 18, 'TitleFontSizeMultiplier', 1.2);
else
plot_band(SVARIV_FVD.ci.lower(:,i), SVARIV_FVD.ci.upper(:,i), SVARIV_FVD.estim(:,i), [], ...
plots.titles{i}, plots.xlabel, plots.ylabel, [], ...
'YLim', [0 1], 'XLim', [1 max(SVARIV_settings_struct.FVD_hor)], 'XTick', plots.xticks, 'FontSize', 18, 'TitleFontSizeMultiplier', 1.2);
end
grid on;
drawnow;
save_fig('figures', strcat('svar_kaenzig_', data.endo_vars{i}));
end
clear i;