forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaot_model_compiler.cc
251 lines (223 loc) · 9.14 KB
/
aot_model_compiler.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#include <sstream>
#include <string>
#include <ATen/core/jit_type.h>
#include <c10/core/ScalarType.h>
#include <torch/csrc/jit/backends/backend.h>
#include <torch/csrc/jit/backends/backend_detail.h>
#include <torch/csrc/jit/backends/backend_preprocess.h>
#include <torch/csrc/jit/mobile/nnc/aot_compiler.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/passes/frozen_graph_optimizations.h>
#include <torch/csrc/jit/passes/peephole.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/passes/symbolic_shape_analysis.h>
#include <torch/csrc/jit/serialization/export.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/csrc/jit/tensorexpr/graph_opt.h>
#include <torch/csrc/jit/tensorexpr/kernel.h>
#include <torch/script.h>
C10_DEFINE_string(model, "", "The torch script model to optimize.");
C10_DEFINE_string(model_name, "", "The name of the model.");
C10_DEFINE_string(model_version, "", "The version of the model.");
C10_DEFINE_string(
input_dims,
"",
"The dimensions of input TensorCPUs using comma separated numbers."
"If multiple inputs needed, use semicolon to separate "
"the dimension of different tensors.");
C10_DEFINE_string(
input_types,
"float",
"The dtype of input TensorCPUs."
"If multiple inputs needed, use semicolon to separate "
"the dtype of different tensors."
"Supported dtypes: float, int64, uint8");
C10_DEFINE_string(method_name, "forward", "The name of the method.");
C10_DEFINE_string(
output_llvm,
"",
"Name of the output llvm assembly to be saved.");
C10_DEFINE_string(output_model, "", "Name of the output model to be saved.");
namespace {
std::vector<std::string> split(
char separator,
const std::string& string,
bool ignore_empty = true) {
std::vector<std::string> pieces;
std::stringstream ss(string);
std::string item;
while (getline(ss, item, separator)) {
if (!ignore_empty || !item.empty()) {
pieces.push_back(std::move(item));
}
}
return pieces;
}
std::vector<std::vector<int64_t>> parseInputShapes() {
CAFFE_ENFORCE_GE(FLAGS_input_dims.size(), 0, "Input dims must be specified.");
std::vector<std::string> input_dims_list = split(';', FLAGS_input_dims);
std::vector<std::vector<int64_t>> inputs;
for (const auto& input_dims_item : input_dims_list) {
auto input_dims_str = split(',', input_dims_item);
std::vector<int64_t> input_dims;
input_dims.reserve(input_dims_str.size());
for (const auto& s : input_dims_str) {
input_dims.push_back(c10::stoi(s));
}
inputs.push_back(input_dims);
}
return inputs;
}
std::vector<at::ScalarType> parseInputTypes() {
std::vector<std::string> inputTypes = split(';', FLAGS_input_types);
std::vector<at::ScalarType> scalarTypes;
for (const auto& inputType : inputTypes) {
at::ScalarType scalarType;
if (inputType == "float") {
scalarType = at::ScalarType::Float;
} else if (inputType == "uint8") {
scalarType = at::ScalarType::Byte;
} else if (inputType == "int64") {
scalarType = at::ScalarType::Long;
} else {
CAFFE_THROW("Unsupported input type: ", inputType);
}
scalarTypes.push_back(scalarType);
}
return scalarTypes;
}
c10::Dict<c10::IValue, c10::IValue> createCompileSpec() {
c10::Dict<c10::IValue, c10::IValue> compile_spec(
c10::StringType::get(), c10::AnyType::get());
c10::Dict<c10::IValue, c10::IValue> method_spec(
c10::StringType::get(), c10::AnyType::get());
auto inputShapes = parseInputShapes();
auto inputTypes = parseInputTypes();
method_spec.insert("sizes", inputShapes);
method_spec.insert("types", inputTypes);
compile_spec.insert(FLAGS_method_name, method_spec);
return compile_spec;
}
std::vector<std::vector<int64_t>> getInputSizes(
const c10::Dict<c10::IValue, c10::IValue>& compile_spec) {
auto input_shapes = compile_spec.at(FLAGS_method_name).toGenericDict().at("sizes").toList();
std::vector<std::vector<int64_t>> inputSizes;
for (const auto& input_shape : input_shapes) {
auto sizes = ((c10::IValue) input_shape).toIntVector();
inputSizes.emplace_back(sizes);
}
return inputSizes;
}
std::vector<at::ScalarType> getInputTypes(
const c10::Dict<c10::IValue, c10::IValue>& compile_spec) {
auto inputTypesList = compile_spec.at(FLAGS_method_name).toGenericDict().at("types").toList();
std::vector<at::ScalarType> inputTypes;
for (const auto& inputType : inputTypesList) {
auto type = ((c10::IValue) inputType).toScalarType();
inputTypes.emplace_back(type);
}
return inputTypes;
}
std::string getNncKernelId() {
// TODO: calculate the version_token.
const std::string version_token = "VERTOKEN";
return FLAGS_model_name + ":" + FLAGS_model_version + ":" + FLAGS_method_name +
":" + version_token;
}
std::string getNncKernelFuncName(const std::string& method_name) {
return "nnc_" + FLAGS_model_name + "_" + FLAGS_model_version + "_" + method_name;
}
void writeOutputLlvmAssembly(const std::string& asm_code) {
std::string output_llvm_file_name = FLAGS_output_llvm;
if (output_llvm_file_name.empty()) {
output_llvm_file_name =
FLAGS_model.substr(0, FLAGS_model.find('.')) + ".compiled.ll";
}
std::ofstream output(output_llvm_file_name);
output << asm_code;
std::cout << "The compiled llvm assembly code was saved to " << output_llvm_file_name
<< std::endl;
}
c10::IValue preprocess(
const torch::jit::Module& mod,
const c10::Dict<c10::IValue, c10::IValue>& compile_spec,
const torch::jit::BackendDebugHandleGenerator& generate_debug_handles) {
auto method = mod.get_method(FLAGS_method_name);
auto graph = toGraphFunction(method.function()).graph()->copy();
auto sizes = getInputSizes(compile_spec);
auto types = getInputTypes(compile_spec);
auto kernel_func_name = getNncKernelFuncName(FLAGS_method_name);
auto compiled = torch::jit::mobile::nnc::aotCompile(
FLAGS_method_name, graph, sizes, types, kernel_func_name);
writeOutputLlvmAssembly(compiled.second);
auto func = std::move(compiled.first);
func->set_nnc_kernel_id(getNncKernelId());
torch::jit::mobile::nnc::CompilationUnit cu;
cu.register_function(std::move(func));
return cu.serialize();
}
static auto reg = torch::jit::backend_preprocess_register("nnc", preprocess);
} // namespace
int main(int argc, char** argv) {
c10::SetUsageMessage(
"Run NNC AOT compiler for pytorch model. Example usage:\n"
"build/bin/aot_model_compiler"
" --model=<model file>"
" --model_name=<model name>"
" --model_version=<model version>"
" --input_dims=<input dimensions like '1,3,224,224;2,2'>"
" --input_types=<input dtypes like 'float;float'>"
" [--method_name=<method name>]"
" [--output_llvm=<llvm assembly output file path>]"
" [--output_model=<output model file path>]");
if (!c10::ParseCommandLineFlags(&argc, &argv)) {
std::cerr << "Failed to parse command line flags!" << std::endl;
std::cout << c10::UsageMessage() << std::endl;
return 1;
}
CAFFE_ENFORCE(!FLAGS_model.empty(), c10::UsageMessage());
CAFFE_ENFORCE(!FLAGS_model_name.empty(), c10::UsageMessage());
CAFFE_ENFORCE(!FLAGS_model_version.empty(), c10::UsageMessage());
CAFFE_ENFORCE(!FLAGS_input_dims.empty(), c10::UsageMessage());
CAFFE_ENFORCE(split(';', FLAGS_input_dims).size() == split(';', FLAGS_input_types).size(),
"Number of input_dims and input_types should be the same");
std::string output_model_name = FLAGS_output_model;
if (output_model_name.empty()) {
output_model_name =
FLAGS_model.substr(0, FLAGS_model.find('.')) + ".compiled.pt";
}
auto m = torch::jit::load(FLAGS_model);
m.eval();
auto frozen_m = torch::jit::freeze_module(m.clone());
auto graph = frozen_m.get_method(FLAGS_method_name).graph();
auto inputShapes = parseInputShapes();
auto inputTypes = parseInputTypes();
std::vector<c10::optional<at::Tensor>> example_inputs;
example_inputs.reserve(inputShapes.size());
for (int i = 0; i < inputShapes.size(); ++i) {
example_inputs.emplace_back(at::rand(inputShapes[i]).to(at::dtype(inputTypes[i])));
}
torch::jit::RemoveTensorMutation(graph);
torch::jit::EliminateDeadCode(graph->block());
graph = torch::jit::tensorexpr::removeUnusedSelfArgument(graph);
torch::jit::tensorexpr::annotateInputShapes(graph, example_inputs);
torch::jit::OptimizeFrozenGraph(graph, true);
torch::jit::PropagateShapesOnGraph(graph);
torch::jit::PeepholeOptimize(graph, false);
torch::jit::ConstantPropagation(graph);
torch::jit::PropagateShapesOnGraph(graph);
torch::jit::PeepholeOptimize(graph, false);
torch::jit::ConstantPropagation(graph);
auto compile_spec = createCompileSpec();
auto any_dict_ty =
c10::DictType::create(c10::StringType::get(), c10::AnyType::get());
auto compiled_module = torch::jit::detail::codegen_backend_module(
"nnc", frozen_m, compile_spec, any_dict_ty);
compiled_module._save_for_mobile(output_model_name);
std::cout << "The compiled model was saved to " << output_model_name
<< std::endl;
return 0;
}