-
Notifications
You must be signed in to change notification settings - Fork 0
/
bayes.py
144 lines (132 loc) · 4.96 KB
/
bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from numpy import *
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', \
'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', \
'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', \
'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how',\
'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
return postingList,classVec
def createVocabList(dataSet):
vocabSet = set([])
for document in dataSet:
vocabSet = vocabSet | set(document)
return list(vocabSet)
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1 #Create a vector D of all 0s
else: print "the word: %s is not in my Vocabulary!" % word
return returnVec
def prepareMatrix():
postingList,classVec = loadDataSet()
retMatrix = []
vocabList = createVocabList(postingList)
for l in postingList:
retMatrix.append(setOfWords2Vec(vocabList,l))
return retMatrix,classVec
def trainNB0(trainMatrix,trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = ones(numWords)
p1Num = ones(numWords)
p0Denom = 2.0
p1Denom = 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
#print "p1Num=%r"%p1Num
p1Denom += sum(trainMatrix[i])
#print "p1Denom=%r"%p1Denom
else:
p0Num += trainMatrix[i]
#print "p0Num=%r"%p0Num
p0Denom += sum(trainMatrix[i])
#print "p0Denom=%r"%p0Denom
p1Vect = log(p1Num/p1Denom)
#print p1Num
p0Vect = log(p0Num/p0Denom)
#print p0Num
return p0Vect,p1Vect,pAbusive
def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1):
p1 = sum(vec2Classify * p1Vec) + log(pClass1)
p0 = sum(vec2Classify * p0Vec) + log(1.0-pClass1)
if p1 > p0:
return 1
else:
return 0
def bagOfWords2vecMN(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
returnVec[vocabList.index(word)]+=1
return returnVec
def testingNB():
listOPosts, listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList,postinDoc))
p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
testEntry = ['love','my','dalmation']
thisDoc = array(setOfWords2Vec(myVocabList,testEntry))
print testEntry,'classified as:',classifyNB(thisDoc,p0V,p1V,pAb)
testEntry = ['stupid','garbage']
thisDoc = array(setOfWords2Vec(myVocabList,testEntry))
print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
def textParse(bigString):
import re
listOfTokens = re.split(r'\W*',bigString)
tk = []
for tok in listOfTokens:
if len(tok) >1 and re.findall('\D+',tok)!=[] :
tk.append(tok.lower())
return tk
def spamTest():
docList = []
classList = []
fullText = []
for i in range(1,26):
wordList = textParse(open('email/spam/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList = textParse(open('email/ham/%d.txt'%i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)
trainingSet = range(50)
testSet=[]
for i in range(10):
randIndex = int(random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[];trainClasses = []
for docIndex in trainingSet:
trainMat.append(setOfWords2Vec(vocabList,docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
errorCount = 0
for docIndex in testSet:
wordVector = setOfWords2Vec(vocabList, docList[docIndex])
if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
errorCount += 1
#print 'the error rate is: ',float(errorCount)/len(testSet)
return float(errorCount)/len(testSet)
def calcMostFreq(vocabList,fullText):
import operator
freqDict = {}
for token in vocabList:
freqDict[token]=fullText.count(token)
sortedFreq = sorted(freqDict.iteritems(),key=operator.itemgetter(1),reverse=True)
return sortedFreq[:30]
def localWords(feed1,feed0):
import feedparser
docList=[];classList=[];fullText=[]